Metabolic mechanisms underlying bronchopulmonary dysplasia-associated pulmonary hypertension
支气管肺发育不良相关肺动脉高压的代谢机制
基本信息
- 批准号:10736803
- 负责人:
- 金额:$ 65.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acetyl Coenzyme AAcetylationAffectAlveolarArterial MediasAttenuatedBlood VesselsBronchopulmonary DysplasiaCarnitineCarnitine Palmitoyltransferase ICell Differentiation processCellsCharacteristicsDataDevelopmentDiseaseDisease ManagementDown-RegulationEndothelial CellsEndotheliumEnzymesExposure toFetusGene ExpressionGoalsHospitalizationHumanHyperoxiaIn VitroInfantInnovative TherapyKnockout MiceLevocarnitineLungMechanical ventilationMediatingMesenchymalMetabolicMetabolismMitochondriaMolecularMusNeonatal Hyperoxic InjuryNewborn InfantOxygenPathogenicityPatientsPlayPredispositionPremature InfantProliferatingProtein AcetylationPulmonary HypertensionPulmonary Vascular ResistanceReportingResearchRoleSmooth Muscle MyocytesSystemTestingUp-RegulationVasodilator Agentsclinically relevantcostcurative treatmentsdefined contributionfatty acid metabolismfatty acid oxidationinnovationlamb modellong chain fatty acidmouse modelnanoparticlenanoparticle deliveryneonatal miceneonatenew therapeutic targetnovelnovel therapeuticsoxidationpharmacologicpremature lungspreventprimary pulmonary hypertensionpulmonary vascular remodelingreduce symptomsresponsesuccesstherapeutic targettransdifferentiationtranslational potentialvascular smooth muscle cell migrationvascular smooth muscle cell proliferationventilation
项目摘要
SUMMARY
Bronchopulmonary dysplasia (BPD) is a chronic lung disease in premature infants, caused by mechanical
ventilation and hyperoxia amongst other factors. Thirty percent of infants with BPD develop pulmonary
hypertension (PH), characterized by pulmonary vascular (PV) remodeling. There are no curative therapies for
this disease. My long-term goal is to develop novel targeted therapies to treat BPD associated PH (BPD-PH).
PV remodeling is characterized by increased pulmonary arterial media layer thickening. This results from
proliferation of vascular smooth muscle cells (SMCs), or transdifferentiation from endothelial cells (ECs) to SMCs
(i.e., endothelial-mesenchymal transition, EndoMT). We have shown that hyperoxia in newborn mice and
mechanical ventilation in preterm lambs cause PV remodeling resulting in PH, which is associated with increased
EndoMT. We preliminarily show that EndoMT is also observed in the lung of premature human infants requiring
mechanical ventilation. Blocking EndoMT prevents the progression of neonatal hyperoxia-induced PV
remodeling and PH in mice, suggesting that EndoMT plays a causative role in inducing PH. We observed no
increase in EdU incorporation into SMCs in hyperoxia-exposed mice, suggesting proliferation in these cells does
not contribute to PV remodeling in BPD-PH. We recently reported that neonatal hyperoxia causes a persistent
reduction of endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine
shuttle system responsible for transporting long-chain fatty acids into mitochondria for β-oxidation during fatty
acid oxidation. Our preliminary data show that lung Cpt1a gene expression is also reduced in mechanically
ventilated preterm lambs and premature human infants. Additionally, endothelial deletion of Cpt1a increases
EndoMT and PV remodeling in neonatal mice after exposure to hyperoxia. Furthermore, pharmacological
upregulation of Cpt1a attenuates EndoMT in vitro and prevents PV remodeling in neonatal mice in response to
hyperoxia. Whether neonatal hyperoxia and mechanical ventilation reduce endothelial Cpt1a, leading to PH is
yet to be determined. The central hypothesis is that neonatal hyperoxia and mechanical ventilation cause
EndoMT by downregulating endothelial Cpt1a levels, thereby resulting in PV remodeling and PH. We will test
this hypothesis in three Specific Aims. Aim 1 will determine the molecular mechanisms by which Cpt1a
downregulation contributes to EndoMT. In Aim 2, we will define the contribution of endothelial Cpt1a reduction
to BPD-PH and EndoMT. In Aim 3, we will evaluate endothelial Cpt1a as a therapeutic target for BPD-PH using
both lamb and mouse models. The combination of clinically relevant lamb and mouse models with our newly
generated EC-specific Cpt1a KO mice and the novel EC-targeted nanoparticle delivery system provides an
innovative approach to uncover the mechanisms by which Cpt1a downregulation mediates EndoMT and its
significant roles in BPD-PH. This contribution is significant because it is likely to result in new therapies
specifically targeting endothelial Cpt1a or EndoMT in neonates to treat BPD-PH.
概括
支气管肺发育不良(BPD)是由机械引起的早产婴儿的慢性肺疾病
通风和高氧还包括其他因素。 BPD的婴儿中有30%发育肺部
高血压(pH),其特征是肺血管(PV)重塑。没有治疗疗法
这种疾病。我的长期目标是开发新型的靶向疗法来治疗BPD相关的pH(BPD-PH)。
PV重塑的特征是肺动脉培养基层增厚增加。这是由
血管平滑肌细胞(SMC)的增殖,或从内皮细胞(EC)转变为SMC
(即,内皮 - 间质转变,胚胎)。我们已经证明了新生小鼠的高氧
早产羔羊的机械通气会导致PV重塑,导致pH,这与增加有关
endomt。我们初步表明,在需要的早产婴儿的肺中也观察到内托
机械通气。阻塞胚胎阻止新生儿高氧诱导的PV的进展
小鼠的重塑和pH值,表明内粒在诱导的pH中起致病作用。我们观察到没有
在暴露高氧小鼠中掺入SMC中的EDU的增加,表明这些细胞中的增殖IN
在BPD-PH中不促进PV重塑。我们最近报道,新生儿高氧会导致持久性
降低内皮肉碱棕榈酰转移酶1A(CPT1A),肉碱的速率限制酶
班车系统负责将长链脂肪酸运输到线粒体中,以在脂肪中进行β-氧化
酸性氧化。我们的初步数据表明,肺CPT1A基因表达也降低了
通风的早产羔羊和早产婴儿。另外,CPT1A的内皮缺失增加
暴露于高氧后,新生儿小鼠的胚胎和PV重塑。此外,药理学
CPT1A的上调减弱了体外胎盘的体外,并防止新生儿小鼠的PV重塑。
高氧。新生儿高氧和机械通气是否减少了内皮CPT1a,导致pH是
尚待确定。中心假设是新生儿高氧和机械通气导致
通过下调内皮CPT1A水平的胚胎,从而导致PV重塑和pH。我们将测试
这是三个特定目标的假设。 AIM 1将确定CPT1A的分子机制
下调有助于胚胎。在AIM 2中,我们将定义内皮CPT1A减少的贡献
到bpd-ph和endomt。在AIM 3中,我们将评估内皮CPT1A作为BPD-PH的治疗靶标
羔羊和鼠标模型。临床上相关的羔羊和鼠标模型与我们的新的结合
生成的EC特异性CPT1A KO小鼠和新型的EC靶向纳米颗粒输送系统提供了一个
创新的方法是揭示CPT1A下调介导endomt及其的机制
在BPD-PH中的重要作用。这种贡献很重要,因为它可能会导致新的疗法
特别针对新生儿中的内皮CPT1A或内胞菌治疗BPD-PH。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongwei Yao其他文献
Hongwei Yao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongwei Yao', 18)}}的其他基金
Metabolic mechanisms of impaired vascularization during hyperoxic lung injury
高氧性肺损伤期间血管化受损的代谢机制
- 批准号:
10437831 - 财政年份:2013
- 资助金额:
$ 65.74万 - 项目类别:
Metabolic mechanisms of impaired vascularization during hyperoxic lung injury
高氧性肺损伤期间血管化受损的代谢机制
- 批准号:
10200078 - 财政年份:2013
- 资助金额:
$ 65.74万 - 项目类别:
Metabolic mechanisms of impaired vascularization during hyperoxic lung injury
高氧性肺损伤期间血管化受损的代谢机制
- 批准号:
9979899 - 财政年份:
- 资助金额:
$ 65.74万 - 项目类别:
相似国自然基金
TIPE3通过调控P53乙酰化影响胶质母细胞瘤铁死亡的机制研究
- 批准号:82303647
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脱乙酰化酶Dac6调控碳源利用影响新型隐球菌耐热性
- 批准号:82302549
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤代谢产物L-2-HG调控LDHA乙酰化影响组蛋白乳酸化修饰促进肾透明细胞癌免疫逃逸的机制研究
- 批准号:82303202
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支持细胞中NAT10介导ac4C乙酰化影响精子发生的分子机制研究
- 批准号:82301805
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧运动及HDAC4/5对骨骼肌细胞代谢酶乙酰化的影响及其在改善胰岛素抵抗过程中机制研究
- 批准号:32371186
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Metabolic Control of Epigenetic Reprogramming in Neovascularization
新血管形成中表观遗传重编程的代谢控制
- 批准号:
10605418 - 财政年份:2023
- 资助金额:
$ 65.74万 - 项目类别:
Pathogenesis, prevention and treatment of corticosteroid-resistant gut GVHD
皮质类固醇耐药性肠道GVHD的发病机制及防治
- 批准号:
10585851 - 财政年份:2023
- 资助金额:
$ 65.74万 - 项目类别:
Metabolism and Epigenetic Regulation are Couples in Transdifferentiation and Vascular Regeneration
代谢和表观遗传调控是转分化和血管再生的结合体
- 批准号:
10905167 - 财政年份:2023
- 资助金额:
$ 65.74万 - 项目类别:
Acetyl CoA Carboxylase in the Metabolic Control of Inflammation
乙酰辅酶A羧化酶在炎症代谢控制中的作用
- 批准号:
10660439 - 财政年份:2023
- 资助金额:
$ 65.74万 - 项目类别:
Rates of brain acetylome remodeling in a mouse model of diabetes and tauopathy
糖尿病和 tau 蛋白病小鼠模型中脑乙酰组重塑率
- 批准号:
10807604 - 财政年份:2023
- 资助金额:
$ 65.74万 - 项目类别: