Metabolic mechanisms underlying bronchopulmonary dysplasia-associated pulmonary hypertension
支气管肺发育不良相关肺动脉高压的代谢机制
基本信息
- 批准号:10736803
- 负责人:
- 金额:$ 65.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acetyl Coenzyme AAcetylationAffectAlveolarArterial MediasAttenuatedBlood VesselsBronchopulmonary DysplasiaCarnitineCarnitine Palmitoyltransferase ICell Differentiation processCellsCharacteristicsDataDevelopmentDiseaseDisease ManagementDown-RegulationEndothelial CellsEndotheliumEnzymesExposure toFetusGene ExpressionGoalsHospitalizationHumanHyperoxiaIn VitroInfantInnovative TherapyKnockout MiceLevocarnitineLungMechanical ventilationMediatingMesenchymalMetabolicMetabolismMitochondriaMolecularMusNeonatal Hyperoxic InjuryNewborn InfantOxygenPathogenicityPatientsPlayPredispositionPremature InfantProliferatingProtein AcetylationPulmonary HypertensionPulmonary Vascular ResistanceReportingResearchRoleSmooth Muscle MyocytesSystemTestingUp-RegulationVasodilator Agentsclinically relevantcostcurative treatmentsdefined contributionfatty acid metabolismfatty acid oxidationinnovationlamb modellong chain fatty acidmouse modelnanoparticlenanoparticle deliveryneonatal miceneonatenew therapeutic targetnovelnovel therapeuticsoxidationpharmacologicpremature lungspreventprimary pulmonary hypertensionpulmonary vascular remodelingreduce symptomsresponsesuccesstherapeutic targettransdifferentiationtranslational potentialvascular smooth muscle cell migrationvascular smooth muscle cell proliferationventilation
项目摘要
SUMMARY
Bronchopulmonary dysplasia (BPD) is a chronic lung disease in premature infants, caused by mechanical
ventilation and hyperoxia amongst other factors. Thirty percent of infants with BPD develop pulmonary
hypertension (PH), characterized by pulmonary vascular (PV) remodeling. There are no curative therapies for
this disease. My long-term goal is to develop novel targeted therapies to treat BPD associated PH (BPD-PH).
PV remodeling is characterized by increased pulmonary arterial media layer thickening. This results from
proliferation of vascular smooth muscle cells (SMCs), or transdifferentiation from endothelial cells (ECs) to SMCs
(i.e., endothelial-mesenchymal transition, EndoMT). We have shown that hyperoxia in newborn mice and
mechanical ventilation in preterm lambs cause PV remodeling resulting in PH, which is associated with increased
EndoMT. We preliminarily show that EndoMT is also observed in the lung of premature human infants requiring
mechanical ventilation. Blocking EndoMT prevents the progression of neonatal hyperoxia-induced PV
remodeling and PH in mice, suggesting that EndoMT plays a causative role in inducing PH. We observed no
increase in EdU incorporation into SMCs in hyperoxia-exposed mice, suggesting proliferation in these cells does
not contribute to PV remodeling in BPD-PH. We recently reported that neonatal hyperoxia causes a persistent
reduction of endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine
shuttle system responsible for transporting long-chain fatty acids into mitochondria for β-oxidation during fatty
acid oxidation. Our preliminary data show that lung Cpt1a gene expression is also reduced in mechanically
ventilated preterm lambs and premature human infants. Additionally, endothelial deletion of Cpt1a increases
EndoMT and PV remodeling in neonatal mice after exposure to hyperoxia. Furthermore, pharmacological
upregulation of Cpt1a attenuates EndoMT in vitro and prevents PV remodeling in neonatal mice in response to
hyperoxia. Whether neonatal hyperoxia and mechanical ventilation reduce endothelial Cpt1a, leading to PH is
yet to be determined. The central hypothesis is that neonatal hyperoxia and mechanical ventilation cause
EndoMT by downregulating endothelial Cpt1a levels, thereby resulting in PV remodeling and PH. We will test
this hypothesis in three Specific Aims. Aim 1 will determine the molecular mechanisms by which Cpt1a
downregulation contributes to EndoMT. In Aim 2, we will define the contribution of endothelial Cpt1a reduction
to BPD-PH and EndoMT. In Aim 3, we will evaluate endothelial Cpt1a as a therapeutic target for BPD-PH using
both lamb and mouse models. The combination of clinically relevant lamb and mouse models with our newly
generated EC-specific Cpt1a KO mice and the novel EC-targeted nanoparticle delivery system provides an
innovative approach to uncover the mechanisms by which Cpt1a downregulation mediates EndoMT and its
significant roles in BPD-PH. This contribution is significant because it is likely to result in new therapies
specifically targeting endothelial Cpt1a or EndoMT in neonates to treat BPD-PH.
概括
支气管肺发育不良(BPD)是早产儿的一种慢性肺部疾病,由机械性呼吸引起。
30% 的 BPD 婴儿会出现肺通气和高氧血症等因素。
以肺血管(PV)重塑为特征的高血压(PH)尚无治疗方法。
我的长期目标是开发新的靶向疗法来治疗 BPD 相关 PH (BPD-PH)。
PV 重塑的特点是肺动脉中层增厚。
血管平滑肌细胞 (SMC) 的增殖,或从内皮细胞 (EC) 向 SMC 的转分化
(即内皮间质转化,EndoMT)我们已经证明新生小鼠的高氧血症和
早产羔羊的机械通气会导致 PV 重塑,从而导致 PH 升高,这与 PH 升高有关
我们初步表明,在需要的早产儿的肺部也观察到了 EndoMT。
阻断 EndoMT 可预防新生儿高氧诱导的 PV 进展。
小鼠体内的重塑和 PH,表明 EndoMT 在诱导 PH 中起着致病作用。
在高氧暴露的小鼠中,EdU 融入 SMC 的数量增加,表明这些细胞的增殖确实
不会导致 BPD-PH 中的 PV 重塑。我们最近报道,新生儿高氧血症会导致持续性的。
内皮肉碱棕榈酰转移酶 1a (Cpt1a)(肉碱限速酶)的减少
穿梭系统负责将长链脂肪酸运输到线粒体中进行脂肪氧化过程中的β-氧化
我们的初步数据表明,肺 Cpt1a 基因表达也因机械原因而降低。
此外,通气的早产羔羊和早产人类婴儿中 Cpt1a 的内皮缺失也会增加。
新生小鼠暴露于高氧后的 EndoMT 和 PV 重塑此外,药理学。
Cpt1a 的上调可在体外减弱 EndoMT 并防止新生小鼠响应于
新生儿高氧和机械通气是否会降低内皮Cpt1a,导致PH?
尚未确定的中心假设是新生儿高氧血症和机械通气导致。
EndoMT 通过下调内皮 Cpt1a 水平,从而导致 PV 重塑和 PH。
三个具体目标 1 中的这一假设将确定 Cpt1a 的分子机制。
下调有助于 EndoMT 在目标 2 中,我们将定义内皮 Cpt1a 减少的贡献。
BPD-PH 和 EndoMT 在目标 3 中,我们将使用内皮 Cpt1a 作为 BPD-PH 的治疗靶点进行评估。
羔羊和小鼠模型将临床相关的羔羊和小鼠模型与我们最新的模型相结合。
产生了 EC 特异性 Cpt1a KO 小鼠,新型 EC 靶向纳米颗粒递送系统提供了
揭示 Cpt1a 下调介导 EndoMT 及其机制的创新方法
在 BPD-PH 中发挥重要作用 这一贡献意义重大,因为它可能会带来新的疗法。
专门针对新生儿的内皮 Cpt1a 或 EndoMT 来治疗 BPD-PH。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongwei Yao其他文献
Hongwei Yao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongwei Yao', 18)}}的其他基金
Metabolic mechanisms of impaired vascularization during hyperoxic lung injury
高氧性肺损伤期间血管化受损的代谢机制
- 批准号:
10437831 - 财政年份:2013
- 资助金额:
$ 65.74万 - 项目类别:
Metabolic mechanisms of impaired vascularization during hyperoxic lung injury
高氧性肺损伤期间血管化受损的代谢机制
- 批准号:
10200078 - 财政年份:2013
- 资助金额:
$ 65.74万 - 项目类别:
Metabolic mechanisms of impaired vascularization during hyperoxic lung injury
高氧性肺损伤期间血管化受损的代谢机制
- 批准号:
9979899 - 财政年份:
- 资助金额:
$ 65.74万 - 项目类别:
相似国自然基金
脱乙酰化酶Dac6调控碳源利用影响新型隐球菌耐热性
- 批准号:82302549
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧运动及HDAC4/5对骨骼肌细胞代谢酶乙酰化的影响及其在改善胰岛素抵抗过程中机制研究
- 批准号:32371186
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肿瘤代谢产物L-2-HG调控LDHA乙酰化影响组蛋白乳酸化修饰促进肾透明细胞癌免疫逃逸的机制研究
- 批准号:82303202
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
炎症微环境影响BRG1乙酰化诱导深静脉血栓形成的功能和机制研究
- 批准号:82370416
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
TIPE3通过调控P53乙酰化影响胶质母细胞瘤铁死亡的机制研究
- 批准号:82303647
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Metabolic Control of Epigenetic Reprogramming in Neovascularization
新血管形成中表观遗传重编程的代谢控制
- 批准号:
10605418 - 财政年份:2023
- 资助金额:
$ 65.74万 - 项目类别:
Pathogenesis, prevention and treatment of corticosteroid-resistant gut GVHD
皮质类固醇耐药性肠道GVHD的发病机制及防治
- 批准号:
10585851 - 财政年份:2023
- 资助金额:
$ 65.74万 - 项目类别:
Metabolism and Epigenetic Regulation are Couples in Transdifferentiation and Vascular Regeneration
代谢和表观遗传调控是转分化和血管再生的结合体
- 批准号:
10905167 - 财政年份:2023
- 资助金额:
$ 65.74万 - 项目类别:
Acetyl CoA Carboxylase in the Metabolic Control of Inflammation
乙酰辅酶A羧化酶在炎症代谢控制中的作用
- 批准号:
10660439 - 财政年份:2023
- 资助金额:
$ 65.74万 - 项目类别:
Rates of brain acetylome remodeling in a mouse model of diabetes and tauopathy
糖尿病和 tau 蛋白病小鼠模型中脑乙酰组重塑率
- 批准号:
10807604 - 财政年份:2023
- 资助金额:
$ 65.74万 - 项目类别: