Metabolic Control of Epigenetic Reprogramming in Neovascularization
新血管形成中表观遗传重编程的代谢控制
基本信息
- 批准号:10605418
- 负责人:
- 金额:$ 3.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:Acetyl Coenzyme AAffectAttenuatedBiological ProcessBlood VesselsCardiac MyocytesCardiovascular DiseasesCardiovascular ModelsCardiovascular systemCell Fate ControlCell LineCellsCoinDNADataDiseaseEndothelial CellsEnzymesEpigenetic ProcessFibroblastsGene ExpressionGeneticGlobal ChangeGoalsHeart failureHindlimbHistone AcetylationImmune signalingIn VitroInflammatoryInterventionIschemiaKnockout MiceLaboratoriesLinkMedicineMetabolicMetabolic ControlMetabolismMissionModelingMusMyocardial InfarctionNational Heart, Lung, and Blood InstituteNuclearNutrientPathway interactionsPerfusionPhenotypePopulationPost-Translational Protein ProcessingPrimary Cell CulturesProcessProteomicsRecoveryRegenerative MedicineReporterResearch TrainingRoleSignal PathwaySiteSyndromeTestingTissuesTreatment EfficacyUridine Diphosphate N-Acetylglucosaminecandidate identificationestablished cell lineexperimental studyfluidityimprovedin vivoischemic injurylimb ischemiamultiple omicsneovascularizationnew therapeutic targetnovelnovel diagnosticsnovel therapeutic interventionnovel therapeuticspharmacologicpreventregenerativeregenerative approachresiliencetherapeutic angiogenesistransdifferentiationvasculogenesis
项目摘要
Project Summary
The ability to restore the microvasculature and improve perfusion, by expanding the population of endothelial
cells in vivo, would be a major advancement in cardiovascular medicine and create a novel therapeutic approach
to cardiovascular disease. The proposed studies, aimed at identifying the role of O-GlcNAcylation in
transdifferentiation and epigenetic plasticity, may reveal a novel mechanism of neovascularization and uncover
new avenues for therapeutic angiogenesis and vasculogenesis (Carmeliet, 2005, Isner 1999).
Activation of inflammatory signaling pathways is required to drive fibroblasts to undergo angiogenic
transdifferentiation and become endothelial cells in vitro (Sayed, 2015). This process requires cell autonomous
innate immune signaling, which triggers global changes in expression and activity of epigenetic modifiers (Lee,
2012). The term “transflammation” describes the process by which innate immune signaling promotes
epigenetic plasticity and phenotypic fluidity. Recently, it has been shown that a glycolytic shift contributes to
transdifferentiation by increased nuclear acetyl-CoA for histone acetylation (Lai, 2019).
Although this glycolytic switch links metabolism to epigenetic modelling, the contribution of other metabolites to
epigenetic plasticity in neovascularization remains unexplored. Preliminary data indicate that O-GlcNAcylation,
and nutrient driven post-translational modification (PTM), is significantly elevated in angiogenic
transdifferentiation and neovascularization following hindlimb ischemia. This observation raises the exciting
possibility that O-GlcNAcylation links cell fate plasticity to metabolism in vascular transdifferentiation, and that
targeting this PTM may be a new therapeutic avenue in regenerative medicine.
The overarching hypothesis is that O-GlcNAcylation enhances neovascularization in recovery from ischemic
injury by facilitating cell fate plasticity, and that perturbations to O-GlcNAcylation through genetic and
pharmacologic manipulation will attenuate transdifferentiation and diminish neovascularization. The immediate
goal will be to determine if O-GlcNAcylation is required for angiogenic transdifferentiation and to identify targets
of O-GlcNAcylation contributing to epigenetic plasticity and cell fate fluidity in vascular transdifferentiation and
neovascularization. The proposed studies on O-GlcNAcylation in transdifferentiation will identify an
epigenetic mechanism for cellular plasticity and a novel therapeutic target to enhance endogenous
neovascularization for treatment of cardiovascular disease. The long term goal is to evaluate the
therapeutic efficacy of targeting O-GlcNAcylation to enhance vascular recovery in non-ischemic and ischemic
models of cardiovascular disease, such as heart failure and myocardial infarction.
Aim 1: Determine the role of O-GlcNAcylation in transdifferentiation and DNA accessibility in vitro.
Aim 2: Determine the role of O-GlcNAcylation in transdifferentiation and neovascularization in vivo.
项目摘要
通过扩大内皮种群来恢复微脉管系统并改善灌注的能力
体内细胞将是心血管医学的主要进步,并创建一种新型的治疗方法
患心血管疾病。拟议的研究旨在确定O-Glcnacylation在
转变和表观遗传可塑性可能揭示了新型的新生血管形成机制,并发现了
治疗性血管生成和血管生成的新途径(Carmeliet,2005,Isner 1999)。
需要激活炎症信号通路才能驱动成纤维细胞进行血管生成
转分化并在体外变成内皮细胞(Sayed,2015年)。此过程需要单元自动
先天免疫信号传导,它触发了表观遗传修饰剂的全球表达和活性变化(Lee,
2012)。 “转炎”一词描述了先天免疫信号促进的过程
表观可塑性和表型流动性。最近,已经表明糖酵解转移有助于
组蛋白乙酰基的核乙酰辅酶A的转变(LAI,2019)。
尽管这种糖酵解开关将代谢与表观遗传建模联系起来,但其他代谢物对
新血管形成中的表观可塑性仍然出乎意料。初步数据表明O-Glcnacylation,
养分驱动后翻译后修饰(PTM)在血管生成中显着升高
后肢缺血后的转变和新血管化。这个观察使令人兴奋的
O-Glcnacylation将细胞脂肪可塑性与血管转分化的代谢联系起来的可能性,并且
瞄准该PTM可能是再生医学中的新治疗大道。
总体假设是O-Glcnacylation增强了缺血性恢复中的新血管
通过促进细胞命运可塑性的伤害,以及通过遗传和
药理学操纵将减轻转分化并减少新血管形成。直接
目标是确定血管生成转分化是否需要O-Glcnacylation并识别靶标
O-Glcnacylation在血管转分化和
新血管形成。拟议的关于转分化的O-Glcnacylation的研究将确定
细胞塑性的表观遗传机制和一种新型的热靶标,以增强内源性
用于治疗心血管疾病的新血管化。长期目标是评估
靶向O-Glcnacylation的治疗效率,以增强非缺血性和缺血性的血管恢复
心血管疾病的模型,例如心力衰竭和心肌梗塞。
AIM 1:确定O-Glcnacylation在体外跨分化和DNA可及性中的作用。
AIM 2:确定O-Glcnacylation在体内转分化和新血管化中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander J. Lu其他文献
Alexander J. Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
污水处理厂出水中溶解性微生物产物对残留抗生素在河流中衰减过程的影响机制研究
- 批准号:52270090
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
快速和缓慢衰减El Niño事件对春季MJO活动的影响及机理研究
- 批准号:42205045
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
车用燃料电池催化层孔尺度结构衰减对健康服役影响机制研究
- 批准号:52276171
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
车用燃料电池催化层孔尺度结构衰减对健康服役影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
垫片损伤对PEM燃料电池性能衰减的影响与机理研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Metabolic mechanisms underlying bronchopulmonary dysplasia-associated pulmonary hypertension
支气管肺发育不良相关肺动脉高压的代谢机制
- 批准号:
10736803 - 财政年份:2023
- 资助金额:
$ 3.68万 - 项目类别:
AKR1a1 as a novel therapeutic target for Non-Alcoholic Fatty Liver Disease
AKR1a1作为非酒精性脂肪肝的新治疗靶点
- 批准号:
10385931 - 财政年份:2022
- 资助金额:
$ 3.68万 - 项目类别:
AKR1a1 as a novel therapeutic target for Non-Alcoholic Fatty Liver Disease
AKR1a1作为非酒精性脂肪肝的新治疗靶点
- 批准号:
10559523 - 财政年份:2022
- 资助金额:
$ 3.68万 - 项目类别:
Metabolic Regulation of Articular Cartilage and Joint Homeostasis
关节软骨的代谢调节和关节稳态
- 批准号:
10202074 - 财政年份:2021
- 资助金额:
$ 3.68万 - 项目类别:
Metabolic Regulation of Articular Cartilage and Joint Homeostasis
关节软骨的代谢调节和关节稳态
- 批准号:
10447803 - 财政年份:2021
- 资助金额:
$ 3.68万 - 项目类别: