Metabolic mechanisms of impaired vascularization during hyperoxic lung injury
高氧性肺损伤期间血管化受损的代谢机制
基本信息
- 批准号:10200078
- 负责人:
- 金额:$ 26.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-20 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdolescenceAdultAffectAgreementAirAlveolarApoptosisAttenuatedAutomobile DrivingBiologyBlood VesselsBronchopulmonary DysplasiaCardiopulmonaryCardiovascular systemCarnitine Palmitoyltransferase ICarrier ProteinsCatabolismCell ProliferationCellsCellular Metabolic ProcessCenters of Research ExcellenceCeramidesChronic lung diseaseClinicalCytosolDataDependenceDevelopmentDysplasiaEndothelial CellsExposure toFatty AcidsFetal DevelopmentFunctional disorderGene ExpressionGlycolysisGrowthGrowth and Development functionHyperoxiaImpairmentKnockout MiceLeadLevocarnitineLinkLipidsLungMediatingMessenger RNAMetabolicMitochondriaMolecularMusNeonatalOxygenPPAR gammaPatientsPharmacological TreatmentPharmacologyPlayPregnancyPremature InfantPulmonary PathologyRecoveryResidual stateRespirationRodentRodent ModelRoleSphingolipidsSupplementationSurvivorsTestingUp-RegulationVascularizationWeaningWorkangiogenesisblood vessel developmentcapillary bedetomoxirfatty acid oxidationinhibitor/antagonistknock-downlipid metabolismlung developmentlung injuryneonatal miceneonatenoveloxidationpulmonary functionresponsesensorsupplemental oxygenuptake
项目摘要
Bronchopulmonary dysplasia (BPD) is a chronic lung disease, which is characterized by alveolar dysplasia and
impaired vascularization. BPD is defined clinically by continued dependency on supplemental oxygen beyond
36 weeks corrected gestation in premature infants. Although most BPD survivors can be weaned from
supplemental oxygen, there can be residual pulmonary dysfunction and cardiovascular sequelae in adolescence
and adulthood. Oxygen supplementation can disrupt normal lung development and blunt the growth of pulmonary
microvasculature (vessel sprouting). Blood vessel growth is tightly linked to metabolic status in endothelial cells
(ECs); with both glycolysis and mitochondrial fatty acid oxidation (FAO) being essential for EC proliferation and
vessel sprouting. It is not known whether alteration in lung EC metabolism caused by hyperoxic exposure impairs
vascularization, alveolar dysplasia, and subsequent lung injury. Our preliminary data show that hyperoxic
exposure reduced mitochondrial respiration in lung ECs and specifically increased FAO and FA uptake in lung
ECs. However, the increased FAO was reduced when these cells were recovered in air after hyperoxic exposure,
despite continued increase in FATP5 gene expression, facilitating FA uptake. This was associated with increased
apoptosis in lung ECs in response to hyperoxia followed by air recovery. These observations suggest that
hyperoxia followed by air recovery causes a FA uptake/oxidation imbalance, leading to FA accumulation and
apoptosis, perhaps due to increased ceramide synthesis. Imbalance between apoptosis and proliferation plays
an important role in impaired vascularization and alveolarization in BPD. Our preliminary data show that
enhancing FAO by L-carnitine attenuated hyperoxia-induced apoptosis in mouse lung ECs. Conversely,
inhibiting FAO by a specific carnitine palmitoyltransferase 1 inhibitor, etomoxir, increased hyperoxia-induced
apoptosis in these cells. Neither treatment affected lung EC proliferation. The lung pathology of BPD can be
mimicked in rodents exposed to hyperoxia as neonates. We further show that L-carnitine attenuated, whereas
etomoxir aggravated, hyperoxia-induced simplification of the alveoli in neonatal mice. Thus, we hypothesize that
hyperoxic exposure causes FA accumulation, whereas enhancing FAO protects against hyperoxia-induced lung
EC apoptosis and subsequent impaired vascularization and alveolarization in neonates. We propose to: 1)
determine the mechanisms underlying hyperoxia-induced initial increases in FAO in lung ECs; 2) determine how
FAO modulates lung EC apoptosis in response to hyperoxic exposure; 3) determine the role of FAO in hyperoxia-
induced impaired vascularization and alveolarization in neonatal mice. The work will uncover novel metabolic
mechanisms for hyperoxia-induced impairment of pulmonary vascularization and alveolarization. In turn, this will
have a significant translational potential in the development of pharmacological and molecular approaches
targeting fatty acid catabolism to ameliorate lung injury and cardiovascular sequelae in BPD.
支气管肺发育不良(BPD)是一种慢性肺部疾病,其特征是肺泡发育不良和
血管形成受损。 BPD是通过持续依赖对补充氧气的临床定义的
36周纠正了早产婴儿的妊娠。尽管大多数BPD幸存者可以从中断奶
补充氧气,青春期可能存在残留的肺功能障碍和心血管后遗症
和成年。补充氧气会破坏正常的肺发育和钝性肺的生长
微脉管系统(血管发芽)。血管生长与内皮细胞中的代谢状态紧密相关
(ECS);糖酵解和线粒体脂肪酸氧化(FAO)均对EC增殖至关重要
船只发芽。尚不清楚肺EC代谢的改变是否由高氧气暴露损害引起
血管形成,肺泡发育不良和随后的肺损伤。我们的初步数据表明高氧
暴露于肺EC中的线粒体呼吸减少,并特别增加了肺中的粮农组织和FA摄取
ECS。然而,当高氧化后在空气中回收这些细胞时,增加的粮农组织减少了,
尽管FATP5基因表达持续增加,但促进了FA的吸收。这与增加有关
肺EC中的凋亡对高氧,然后是空气回收。这些观察表明
高氧之后,空气恢复会导致FA摄取/氧化失衡,导致FA积累和
凋亡,可能是由于神经酰胺的合成增加所致。细胞凋亡与增殖玩法之间的不平衡
BPD中血管化和肺泡化受损中的重要作用。我们的初步数据表明
通过L-肉碱衰减的高氧诱导的小鼠肺ECS的凋亡增强粮农组织。反过来,
通过特定的肉碱棕榈转移酶1抑制剂抑制粮农组织,etomoxir增加了高氧诱导的
这些细胞的凋亡。两项治疗都不影响肺EC的增殖。 BPD的肺病理可能是
模仿暴露于高氧作为新生儿的啮齿动物。我们进一步表明,L-肉碱减弱,而
Etomoxir加重,高氧诱导的新生小鼠肺泡的简化。因此,我们假设
高氧气暴露会导致FA积累,而增强的粮农
EC凋亡以及随后的新生儿血管化和肺泡化受损。我们建议:1)
确定肺ECS中粮农组织的初始增加的基础机制; 2)确定如何
粮农组织可调节肺EC凋亡,以应对高氧的暴露; 3)确定粮农组织在高氧中的作用 -
在新生小鼠中诱导的血管化和牙槽化受损。这项工作将发现新代谢
高氧引起的肺血管化和肺泡化损伤的机制。反过来,这将
在药理学和分子方法的发展中具有巨大的翻译潜力
靶向脂肪酸分解代谢可改善BPD中的肺损伤和心血管后遗症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongwei Yao其他文献
Hongwei Yao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongwei Yao', 18)}}的其他基金
Metabolic mechanisms underlying bronchopulmonary dysplasia-associated pulmonary hypertension
支气管肺发育不良相关肺动脉高压的代谢机制
- 批准号:
10736803 - 财政年份:2023
- 资助金额:
$ 26.16万 - 项目类别:
Metabolic mechanisms of impaired vascularization during hyperoxic lung injury
高氧性肺损伤期间血管化受损的代谢机制
- 批准号:
10437831 - 财政年份:2013
- 资助金额:
$ 26.16万 - 项目类别:
Metabolic mechanisms of impaired vascularization during hyperoxic lung injury
高氧性肺损伤期间血管化受损的代谢机制
- 批准号:
9979899 - 财政年份:
- 资助金额:
$ 26.16万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
- 批准号:
10751263 - 财政年份:2024
- 资助金额:
$ 26.16万 - 项目类别:
Iron deficits and their relationship with symptoms and cognition in Psychotic Spectrum Disorders
铁缺乏及其与精神病谱系障碍症状和认知的关系
- 批准号:
10595270 - 财政年份:2023
- 资助金额:
$ 26.16万 - 项目类别:
Young Sexual Minority Women's Mental Health: Developmental Trajectories, Mechanisms of Risk, and Protective Factors.
年轻性少数女性的心理健康:发展轨迹、风险机制和保护因素。
- 批准号:
10635506 - 财政年份:2023
- 资助金额:
$ 26.16万 - 项目类别:
Impact VR: An Emotion Recognition and Regulation Training Program for Youth with Conduct Disorder
Impact VR:针对行为障碍青少年的情绪识别与调节培训项目
- 批准号:
10698855 - 财政年份:2023
- 资助金额:
$ 26.16万 - 项目类别:
Probiotic Administration for Adolescent Depression
益生菌治疗青少年抑郁症
- 批准号:
10646130 - 财政年份:2023
- 资助金额:
$ 26.16万 - 项目类别: