POLYMERIC ELECTRON PARAMAGNETIC RESONANCE PROBES FOR REAL-TIME MONITORING OF TISSUE VASCULARIZATION

用于实时监测组织血管化的聚合物电子顺磁共振探头

基本信息

  • 批准号:
    9811147
  • 负责人:
  • 金额:
    $ 15.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-01-08 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

Program Director/Principal Investigator (Last, First, Middle): GUAN, JIANJUN Project Summary The objective of this proposal is to create bioeliminable and injectable hydrogel-based electron paramagnetic resonance (EPR) probes that can be implanted for the real-time and long-term measurement of tissue oxygen (O2) concentration. The purpose is to monitor the ischemic tissue vascularization process during therapy. Ischemic diseases, resulting from reduced blood supply, lead to serious damage and injury of various tissues and organs. The primary therapeutic goal for ischemic diseases is to vascularize the ischemic tissues to restore blood flow. To quickly, conveniently, and accurately evaluate the efficacy of the therapy, real-time and reproducible monitoring of tissue O2 concentration changes at the same tissue location by a minimally invasive or non-invasive spectroscopic approach represents a compelling strategy. However, this cannot be achieved by any clinically available approaches. Current approaches are either unable to provide real-time and long-term measurements under ischemic conditions or invasive. Among the different techniques for tissue O2 concentration measurement, EPR has the potential to achieve this goal. EPR has distinct advantages over other techniques, such as the ability to measure tissue O2 concentration without consuming O2, and to provide absolute values even at low O2 concentration environment. However, until now there is a lack of suitable EPR probes that can maintain a consistent concentration in tissues for an extended period (≥ 4 weeks), and can be implanted and/or retrieved by a minimally invasive approach. The proposed work addresses the critical need for bioeliminable, non-toxic, and long-lasting EPR probes that can be implanted by a minimally invasive approach for the long-term monitoring of tissue O2 concentration. This is highly novel and similar EPR probes have not been developed previously. The proposed hydrogel-based EPR probes will not only be injectable and bioeliminable, but also feature a fast gelation rate, a slow weight loss rate, high O2 permeability, and high EPR sensitivity. The injectable hydrogels can be implanted into tissues by a minimally invasive injection approach. The hydrogel-based EPR probes will have high molecular weight, and this will overcome the toxicity issue of commonly used small molecule EPR probes. Furthermore, they can be removed from the body after becoming water soluble by hydrolysis of side groups, thereby eliminating the need for retrieval. The hydrogels will be designed to have high gelation rate to achieve high retention in tissues. The probes with slow weight loss rate will maintain the EPR signal intensity for an extended period of time while retaining in a certain tissue location, allowing for long-term monitoring of O2 concentration. The high O2 permeability and EPR sensitivity will ensure that a small change in O2 concentration can be monitored in real-time. AIM #1 will create bioeliminable and injectable hydrogel-based EPR probes with a fast gelation rate, a slow weight loss rate, high oxygen permeability, and high EPR sensitivity. AIM #2 will test the hypothesis that the developed hydrogel-based EPR probe will allow continuous monitoring of tissue oxygen concentration using an ischemic limb model. OMB No. 0925-0001/0002 (Rev. 08/12 Approved Through 8/31/2015) Page Continuation Format Page
项目主任/首席研究员(后、一、中):管建军 项目概要 该提案的目标是创建可生物消除和可注射的基于水凝胶的电子顺磁 可植入实时、长期测量组织氧 (O2) 的共振 (EPR) 探针 目的是监测治疗期间缺血组织的血管化过程。 由于血液供应减少而引起的疾病会导致各种组织和器官的严重损害和损伤。 缺血性疾病的主要治疗目标是使缺血组织血管化以恢复血流。 快速、方便、准确地评估治疗效果,实时、可重复监测 通过微创或无创光谱分析同一组织位置的组织 O2 浓度变化 然而,任何临床可用的方法都无法实现这一点。 当前的方法无法提供实时和长期的测量。 缺血性病症或侵袭性病症。 在组织 O2 浓度测量的不同技术中,EPR 有潜力实现这一目标 EPR 与其他技术相比具有明显的优势,例如测量组织 O2 浓度的能力。 不消耗O2,并且即使在低O2浓度环境下也能提供绝对值。 现在缺乏合适的 EPR 探针可以在组织中长时间保持一致的浓度 周期(≥ 4 周),并且可以通过微创方法植入和/或取出。 拟议的工作解决了对可生物消除、无毒且持久的 EPR 探针的迫切需求 可以通过微创方法植入,用于长期监测组织中的 O2 浓度。 之前尚未开发出高度新颖且类似的 EPR 探针。 探针不仅是可注射和可生物消除的,而且还具有快速凝胶速率、缓慢失重速率、 高 O2 渗透性和高 EPR 敏感性可通过注射水凝胶植入组织中。 基于水凝胶的 EPR 探针将具有高分子量,这将是微创注射方法。 克服了常用小分子 EPR 探针的毒性问题,而且可以将它们从其中去除。 通过侧基水解而溶于水后,可被身体吸收,从而消除了回收的需要。 水凝胶将被设计成具有高凝胶率,以实现在组织中的高保留。 减重率将在较长时间内维持 EPR 信号强度,同时保留在一定的范围内。 组织位置,允许长期监测 O2 浓度 高 O2 渗透性和 EPR 敏感性。 将确保可以实时监测 O2 浓度的微小变化。 AIM #1 将创建可生物消除和可注射的基于水凝胶的 EPR 探针,具有快速凝胶速率、缓慢的凝胶速率 减重率高、透氧率高、EPR敏感性高。 AIM #2 将测试所开发的基于水凝胶的 EPR 探针将允许连续监测的假设 使用缺血肢体模型测量组织氧浓度。 OMB 编号 0925-0001/0002(修订版 08/12 已批准至 8/31/2015) 页面延续格式页面

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianjun Guan其他文献

Jianjun Guan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianjun Guan', 18)}}的其他基金

Targeted delivery of a proangiogenic and promyogenic protein for regeneration of diabetic ischemic limbs
靶向递送促血管生成和促肌生成蛋白以促进糖尿病缺血肢体的再生
  • 批准号:
    10616819
  • 财政年份:
    2022
  • 资助金额:
    $ 15.42万
  • 项目类别:
Targeted delivery of a proangiogenic and promyogenic protein for regeneration of diabetic ischemic limbs
靶向递送促血管生成和促肌生成蛋白以促进糖尿病缺血肢体的再生
  • 批准号:
    10467873
  • 财政年份:
    2022
  • 资助金额:
    $ 15.42万
  • 项目类别:
Regenerative wound dressings for accelerating diabetic wound healing
加速糖尿病伤口愈合的再生伤口敷料
  • 批准号:
    10518977
  • 财政年份:
    2022
  • 资助金额:
    $ 15.42万
  • 项目类别:
Regenerative wound dressings for accelerating diabetic wound healing
加速糖尿病伤口愈合的再生伤口敷料
  • 批准号:
    10684878
  • 财政年份:
    2022
  • 资助金额:
    $ 15.42万
  • 项目类别:
Regenerative wound dressings for accelerating diabetic wound healing
加速糖尿病伤口愈合的再生伤口敷料
  • 批准号:
    10684878
  • 财政年份:
    2022
  • 资助金额:
    $ 15.42万
  • 项目类别:
Targeting angiogenesis for fracture nonunion treatment under inflammatory diseases
靶向血管生成治疗炎症性疾病下的骨折不愈合
  • 批准号:
    10259738
  • 财政年份:
    2020
  • 资助金额:
    $ 15.42万
  • 项目类别:
Targeting angiogenesis for fracture nonunion treatment under inflammatory diseases
靶向血管生成治疗炎症性疾病下的骨折不愈合
  • 批准号:
    10437928
  • 财政年份:
    2020
  • 资助金额:
    $ 15.42万
  • 项目类别:
Targeting angiogenesis for fracture nonunion treatment under inflammatory diseases
靶向血管生成治疗炎症性疾病下的骨折不愈合
  • 批准号:
    10030432
  • 财政年份:
    2020
  • 资助金额:
    $ 15.42万
  • 项目类别:
Preservation and Vascularization of Cardiac Extracellular Matrix after Myocardial Infarction
心肌梗死后心脏细胞外基质的保存和血管化
  • 批准号:
    10094074
  • 财政年份:
    2019
  • 资助金额:
    $ 15.42万
  • 项目类别:
Preservation and Vascularization of Cardiac Extracellular Matrix after Myocardial Infarction
心肌梗死后心脏细胞外基质的保存和血管化
  • 批准号:
    10335142
  • 财政年份:
    2019
  • 资助金额:
    $ 15.42万
  • 项目类别:

相似国自然基金

基于单分子电子学技术研究寡聚苯胺分子间导电机制
  • 批准号:
    22305199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
异核双原子位距调控微观电子结构定向产Co(IV)=O强化光-类芬顿处理高氯盐有机废水机制
  • 批准号:
    52300088
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
锂空气电池四电子氧还原双原子位点设计与几何结构依赖机制研究
  • 批准号:
    22309035
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
研究重元素体系三电离和三电子亲合能的Fock空间耦合簇计算方法和程序
  • 批准号:
    22373070
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
  • 批准号:
    22379027
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Protein Structure and Dynamics by Electron/Nuclear Paramagnetic Resonance
通过电子/核顺磁共振研究蛋白质结构和动力学
  • 批准号:
    DP240100273
  • 财政年份:
    2024
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Discovery Projects
Collaborative Research: EAGER: Insights into the Hydrogen Evolution Reaction of Transition Metal Dichalcogenide Nanocrystals by In-situ Electron Paramagnetic Resonance Spectroscopy
合作研究:EAGER:通过原位电子顺磁共振波谱洞察过渡金属二硫族化物纳米晶体的析氢反应
  • 批准号:
    2302783
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
Emergent Technology for Studying the Structure/Function Relationship of Enzymes Using Electron Paramagnetic Resonance
利用电子顺磁共振研究酶结构/功能关系的新兴技术
  • 批准号:
    10630488
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
Spin-labeling Electron Paramagnetic Resonance Methods for Measurements at Nanoscale Interfaces
用于纳米级界面测量的自旋标记电子顺磁共振方法
  • 批准号:
    2305172
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Standard Grant
Capital Award for Core Equipment 2022/23, National Research Facility for Electron Paramagnetic Resonance Spectroscopy
2022/23年度核心设备资本奖,国家电子顺磁共振波谱研究装置
  • 批准号:
    EP/X034623/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.42万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了