hiPSC Modeling of Restrictive Cardiomyopathy for Drug Testing
用于药物测试的限制性心肌病的 hiPSC 模型
基本信息
- 批准号:10716393
- 负责人:
- 金额:$ 57.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActinsAddressAffectCardiacCardiac MyocytesCardiomyopathiesCessation of lifeChemicalsChildhoodChromatin StructureClinicalClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsDimensionsDiseaseDisease modelEffectivenessEtiologyEvaluationExhibitsFibrosisFunctional disorderGene MutationGenerationsGenesGeneticGenetic Predisposition to DiseaseGlucoseHeart DiseasesHeart TransplantationHeart failureHumanHyperactivityIn VitroInvestigationModelingMolecularMutationMyosin ATPaseMyosin Heavy ChainsOnset of illnessOutcomePathogenesisPathogenicityPathologicPatientsPharmaceutical PreparationsPharmacotherapyPhenotypePhysiologicalProteinsReportingRestRestrictive CardiomyopathySarcomeresSodiumStudy modelsTestingTherapeuticThickTransplantationTreatment EfficacyTroponin ITroponin TVentricularVentricular Remodelingautosomebeta-Myosincardiac tissue engineeringclinical implementationdesigndisease phenotypedrug candidatedrug testingefficacy evaluationgenetic variantimprovedinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinhibitormolecular phenotypestem cell modelsymportertherapeutic candidatetherapeutic developmenttherapeutically effectivetranscriptometranscriptome sequencing
项目摘要
Restrictive Cardiomyopathy (RCM) is an autosomal dominant form of cardiomyopathy characterized by profound
diastolic dysfunction yet normal or near-normal ventricular dimensions, wall thickness, and systolic function.
RCM patients have fewer treatment options and notably poorer outcomes than those with other forms of
cardiomyopathy. This is especially true in pediatric-onset RCM, for which the only definitive therapy is heart
transplantation, often in childhood.
Mutations that cause RCM predominate in the sarcomere, which is the contractile unit of cardiac muscle cells.
Since the dysfunction is intrinsic to cardiomyocytes, human in vitro induced pluripotent stem cell (hiPSC)-derived
cardiomyocytes are well-suited to modeling the RCM and evaluating therapeutics strategies. To date, however,
there are no reported investigation of hiPSC-derived cardiomyocyte models of RCM. This proposal, therefore,
seeks to use hiPSC-based models of familial, pediatric RCM to elucidate pathological features, determine
whether certain mutations cause distinct pathogenetic mechanisms, and evaluate the therapeutic potential of
two newly approved drugs that have shown promise for treating diastolic dysfunction in other forms of heart
disease.
Preliminary studies generated a patient-derived, hiPSC-based model of RCM caused by mutations in cardiac
Troponin-T (TNNT2). We found that heightened Ca2+ sensitivity of force generation and increased fibrosis might
underlie disease pathogenesis. Besides TNNT2, mutations in other sarcomeric mutations also cause severe
pediatric RCM, and some are hypothesized to induce disease by distinct pathophysiological mechanisms.
Therefore, AIM 1 of this proposal is to develop hiPSC models of RCM caused by diverse gene variants, and
identify distinct and common mechanisms of contractile dysfunction. Our hypothesis is that RCM is a
heterogeneous disease and distinct gene variant-specific mechanisms converge to elicit hallmark clinical
features of RCM.
Independently, AIM 2 is to evaluate mavacamten mecarbil and sodium-glucose cotransporter-2 inhibitors
(SGLT2i) for efficacy in treating contractile dysfunction in RCM using the hiPSC models. Mavacamten and
SGLT2i are newly approved for other forms of heart disease. Mavacamten, by decreasing actin-myosin cross-
bridging, might be therapeutically effective for RCM independently of genetic etiology. In contrast, SGLT2
inhibitors (SGLT2i), which operate by inhibiting multiple proteins and decrease intracellular [Ca2+] in
cardiomyocytes, might show selectivity for gene mutation depending on pathogenic mechanism. Characterizing
the basic disease mechanisms of RCM and evaluating the efficacy of candidate therapeutics is a critical step
towards improving management of this challenging disease.
限制性心肌病(RCM)是一种心肌病的常染色体显性形式,其特征是
舒张功能障碍却是正常或近正常的心室尺寸,壁厚和收缩功能。
RCM患者的治疗选择较少,并且与其他形式的患者相比
心肌病。在小儿发作的RCM中尤其如此,唯一的确定疗法是心脏
移植,通常是在童年时期。
引起RCM的突变在肌节中占主导,这是心肌细胞的收缩单位。
由于功能障碍是心肌细胞固有的,因此人体体外诱导的多能干细胞(HIPSC)衍生
心肌细胞非常适合对RCM进行建模和评估治疗策略。但是,迄今为止
尚无报道研究RCM的HIPSC衍生心肌细胞模型。因此,这个建议
寻求使用基于HIPSC的家族性,小儿RCM模型来阐明病理特征,确定
某些突变是否引起不同的致病机制,并评估
两种新批准的药物已经显示出有望治疗其他形式的舒张功能障碍
疾病。
初步研究产生了由心脏突变引起的基于患者的基于HIPSC的RCM模型
Troponin-T(TNNT2)。我们发现提高了力产生和纤维化增加的Ca2+灵敏度可能
基础疾病发病机理。除TNNT2外,其他肉瘤突变中的突变也会引起严重
小儿RCM,有些是通过不同的病理生理机制诱导疾病的。
因此,该提案的目标1是开发由不同基因变体引起的RCM的HIPSC模型,以及
确定收缩功能障碍的独特和常见机制。我们的假设是RCM是
异质疾病和独特的基因变异特异性机制融合到标志性的临床
RCM的功能。
独立地,目标2是评估Mavacamten Mecarbil和钠 - 葡萄糖共转运蛋白-2抑制剂
(SGLT2I)使用HIPSC模型在RCM中处理收缩功能障碍的功效。 Mavacamten和
SGLT2I新批准用于其他形式的心脏病。 mavacamten,通过减少肌动蛋白肌球蛋白交叉
桥接可能独立于遗传病因对RCM有效。相反,SGLT2
抑制剂(SGLT2I),通过抑制多种蛋白质并减少细胞内[Ca2+]
心肌细胞可能会根据致病机制显示基因突变的选择性。特征
RCM的基本疾病机制和评估候选疗法的功效是关键的一步
致力于改善这种充满挑战的疾病的管理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK MERCOLA其他文献
MARK MERCOLA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK MERCOLA', 18)}}的其他基金
High throughput platform for simultaneous multiparametric assessment of cardiac physiology for heart failure drug development
用于心力衰竭药物开发的心脏生理学同步多参数评估的高通量平台
- 批准号:
10745000 - 财政年份:2023
- 资助金额:
$ 57.24万 - 项目类别:
Targeting the genotype to phenotype link in HCM as a therapeutic strategy
将 HCM 中的基因型与表型联系作为治疗策略
- 批准号:
10355529 - 财政年份:2021
- 资助金额:
$ 57.24万 - 项目类别:
Targeting the genotype to phenotype link in HCM as a therapeutic strategy
将 HCM 中的基因型与表型联系作为治疗策略
- 批准号:
10576285 - 财政年份:2021
- 资助金额:
$ 57.24万 - 项目类别:
Kinetic Imaging Cytometer (KIC) for High Throughput Studies of Cellular Physiology
用于细胞生理学高通量研究的动态成像细胞仪 (KIC)
- 批准号:
10175806 - 财政年份:2021
- 资助金额:
$ 57.24万 - 项目类别:
Single-cell Multi-omic Profiling of Drug Responses Using Pooled iPSC-CM Differentiation
使用汇集 iPSC-CM 分化进行药物反应的单细胞多组学分析
- 批准号:
10671175 - 财政年份:2019
- 资助金额:
$ 57.24万 - 项目类别:
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 57.24万 - 项目类别:
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 57.24万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 57.24万 - 项目类别:
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 57.24万 - 项目类别: