Detection and Automatic Privacy-Protected Contact Tracing System Designed for COVID-19
专为 COVID-19 设计的检测和自动隐私保护接触者追踪系统
基本信息
- 批准号:10750367
- 负责人:
- 金额:$ 25.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
The COVID-19 pandemic has rapidly spread across the world, bringing death, illness, disruption to daily
life, and economic crisis to businesses and individuals. The situation has been exacerbated after the schools
and companies reopened due to economic pressure. One of the key failures in COVID-19 containment is
underlined by the inability of our healthcare system in real-time detection in point-of-care (POC) and end-user
settings and precise tracing with privacy protection of active infections. The fundamental limitations of current
gene-based assays stem from their reliance upon amplification and detection of the viral genetic materials
even if there were no intact/infectious viruses. These tests require labor-intensive, laboratory-based sample
preparation protocols for virus lysis, extraction of genetic materials, purification of the isolated materials,
thermal cycling for enzymatic amplification of viral nucleic acid sequences, and interpretation of complex
results by professionals. To accurately determine the infectivity of the infected individuals, contaminated
objects and environments, and provide guidance for patients, public and authorities to better manage treatment
and containment, we seek a new paradigm for rapid and direct pathogen detection and identification in which
the intact virions are directly recognized through their distinct surface epitope features, and the resultant
fluorescent signal is immediately captured by an end-user smartphone, followed by automatic data transition
and event tracing in a blockchain-encrypted manner. To achieve specific recognition of SARS-CoV-2 virions,
we customized a designer DNA nanostructure (DDN)-based capture probe that harbors a macromolecular
“net” whose vertices precisely match the intra- and inter-spatial pattern of SARS-CoV-2 trimeric spike
glycoprotein clusters, and integrates a net-shaped array of SARS-CoV-2 spike specific-targeting aptamers.
This aptamer-DDN is designed for maximum affinity and specificity binding with spikes on intact virions in a
polyvalent and pattern-matching fashion. Once bound to intact virions, the DNA “nets” trigger the release of
fluorescence. This fluorescent signal can be readily and automatically detected by a membrane-shaped and
smartphone-based fluorimeter attached to the end-users' phone cameras. The acquired results will be
associated with user device IDs that are cyber-protected before tracing. We propose to combine DDN capture
probes and a smartphone device to develop and demonstrate a rapid, room temperature, single-step, virus-
specific, and ultrasensitive detection of SARS-CoV-2 virus, in which the detection results can be acquired
within 5 minutes upon exposure, at the user end, allowing tracing the presence of viruses without affecting user
privacy. The signal to result transition, result to ID association, individual track and interacting network tracing
will be blockchain-encrypted to ensure information security for individual privacy, while tracing information
would be available to health authority for public health benefits.
项目摘要/摘要
共同19-19的大流行迅速遍及世界各地,使死亡,疾病,每日造成干扰
生命和经济危机给企业和个人。学校后情况加剧了
公司因经济压力而重新开放。 COVID-19遏制中的关键故障之一是
通过在护理点(POC)和最终用户的实时检测中我们的医疗保健系统无法实现的医疗保健系统强调
设置和精确跟踪,并保护主动感染的隐私保护。当前的基本限制
基于基因的测定源于其对病毒遗传材料扩增和检测的依赖
即使没有完整/传染性病毒。这些测试需要实验室密集型,基于实验室的样本
病毒裂解的制备方案,提取遗传材料,纯化孤立材料的纯化,
热循环以酶促扩增病毒核酸序列,并解释复合物
专业人士的结果。为了准确确定受感染个体的感染,
物体和环境,并为患者,公共和当局提供指导,以更好地管理治疗
和遏制,我们寻求一个新的范式,以快速,直接的病原体检测和鉴定,其中
完整的病毒通过其独特的表面表位特征直接识别
荧光信号立即由最终用户智能手机捕获,然后自动数据过渡
和事件以区块链加密的方式进行追踪。为了获得对SARS-COV-2病毒的特定识别,
我们定制了设计师DNA纳米结构(DDN)的捕获探针,该探针具有大分子
“网”的顶点与SARS-COV-2三聚体峰的空间间和空间间模式完全匹配
糖蛋白簇,并集成了一系列SARS-COV-2尖峰特定靶向的适体。
该apatamer-DDN设计用于最大的亲和力和特异性与完整病毒的尖峰结合
多价和图案匹配的时尚。一旦结合到完整的病毒,DNA“网”触发了释放
荧光。该荧光信号可以通过膜形和自动检测到该荧光信号
基于智能手机的荧光计附在最终用户的电话摄像头上。获得的结果将是
与在跟踪之前对网络保护的用户设备ID相关联。我们建议将DDN捕获结合在一起
问题和智能手机设备,用于开发和证明快速,室温,单步,病毒 -
SARS-COV-2病毒的特异性和超敏检测,可以获取结果
暴露在5分钟内,在用户端,允许在不影响用户的情况下追踪病毒的存在
隐私。导致过渡的信号,ID关联,单个跟踪和交互网络跟踪
将进行区块链加密,以确保个人隐私的信息安全性,同时追踪信息
卫生管理局将获得公共卫生福利。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu Peng其他文献
Cost heterogeneity and peak prediction in collective actions
集体行动中的成本异质性和峰值预测
- DOI:
10.1016/j.eswa.2017.02.009 - 发表时间:
2017-08 - 期刊:
- 影响因子:8.5
- 作者:
Lu Peng - 通讯作者:
Lu Peng
Individual vision and peak distribution in collective actions
集体行动中的个人愿景和峰值分布
- DOI:
10.1016/j.cnsns.2016.10.005 - 发表时间:
2017-06 - 期刊:
- 影响因子:3.9
- 作者:
Lu Peng - 通讯作者:
Lu Peng
Structural effects of participation propensity in online collective actions: Based on big data and Delphi methods
网络集体行动参与倾向的结构效应:基于大数据和德尔菲法
- DOI:
10.1016/j.cam.2018.04.048 - 发表时间:
2018 - 期刊:
- 影响因子:2.4
- 作者:
Lu Peng - 通讯作者:
Lu Peng
Lu Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu Peng', 18)}}的其他基金
Detection and Automatic Privacy-Protected Contact Tracing System Designed for COVID-19
专为 COVID-19 设计的检测和自动隐私保护接触者追踪系统
- 批准号:
10321003 - 财政年份:2020
- 资助金额:
$ 25.26万 - 项目类别:
Detection and Automatic Privacy-Protected Contact Tracing System Designed for COVID-19
专为 COVID-19 设计的检测和自动隐私保护接触者追踪系统
- 批准号:
10264617 - 财政年份:2020
- 资助金额:
$ 25.26万 - 项目类别:
Detection and Automatic Privacy-Protected Contact Tracing System Designed for COVID-19
专为 COVID-19 设计的检测和自动隐私保护接触者追踪系统
- 批准号:
10756670 - 财政年份:2020
- 资助金额:
$ 25.26万 - 项目类别:
相似国自然基金
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于非驾驶姿态多维特征的自动驾驶接管风险态势辨识与自适应调控策略
- 批准号:52372325
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向生物医学文本的知识自动总结研究
- 批准号:72304189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自动机序列的密码安全性分析
- 批准号:62372256
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于国产AI芯片的自动布局布线优化算法研究
- 批准号:62306286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Promoting Universal Screening and Early Identification of Child ADHD via Integrated Automatic EHR Supports in Primary Care
通过初级保健中的集成自动 EHR 支持促进儿童 ADHD 的普遍筛查和早期识别
- 批准号:
10883975 - 财政年份:2023
- 资助金额:
$ 25.26万 - 项目类别:
AddBiomechanics: Automatic Processing and Sharing of Human Movement Data
AddBiomechanics:人体运动数据的自动处理和共享
- 批准号:
10743411 - 财政年份:2023
- 资助金额:
$ 25.26万 - 项目类别:
A State-of-the-Art Automatic Speech Recognition and Conversational Platform to Enable Socially Assistive Robots for Persons with Alzheimer's Disease and Related Dementias
最先进的自动语音识别和对话平台,为阿尔茨海默病和相关痴呆症患者提供社交辅助机器人
- 批准号:
10699887 - 财政年份:2023
- 资助金额:
$ 25.26万 - 项目类别: