Metabolomics and Clinical Assays Center
代谢组学和临床检测中心
基本信息
- 批准号:10549789
- 负责人:
- 金额:$ 470.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-12 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:All of Us Research ProgramAmino AcidsArtificial IntelligenceAutomatic Data ProcessingAwardBehavioralBiogenic AminesBioinformaticsBiologicalBiological AssayBloodBranched-Chain Amino AcidsCLIA certifiedCardiovascular DiseasesCatabolismCeramidesChronic DiseaseClassificationClinicalClinical ResearchCloud ComputingCollaborationsCollectionCommunitiesCompanionsConsensusCoupledDataData Management ResourcesData SetDepositionDiabetes MellitusDietary AssessmentDietary InterventionDietary PracticesDietary intakeElementsEndocrineEnsureEnvironmentFacultyFecesFoodFundingFutureGeneticHealthHealth StatusHeterogeneityHumanIllicit DrugsIndividualInflammatoryInformaticsIngestionInterventionIntervention StudiesKnowledgeLaboratoriesLibrariesLinkLipidsMalignant NeoplasmsManagement Information SystemsManualsMass Spectrum AnalysisMediatingMetabolicMetabolic PathwayMetabolismMetagenomicsMolecularNorth CarolinaNutrientNutrition AssessmentNutritional StudyNutritional statusObesityOntologyParticipantPathway interactionsPharmaceutical PreparationsPhysiologyPhytochemicalPoliciesPopulationPrecision HealthPrivacyProceduresProcessProtocols documentationQuality ControlQuality of lifeReportingResearchResearch DesignResearch InstituteResearch PersonnelResolutionResourcesSamplingScientistSphingomyelinsStructureStudy SubjectSystemTRUST principlesTechnologyTimeTobacco useTranslatingUnited States National Institutes of HealthUniversitiesUrineVitaminsWorkacylcarnitinealgorithm developmentanalysis pipelinebiological systemsclinical centerclinical phenotypecomputational pipelinesdata ecosystemdata infrastructuredata interoperabilitydata modelingdemographicsdesigndietarydisease phenotypedisorder riskepidemiology studyevidence baseexperiencefeedingimprovedinteroperabilityknowledge baselifestyle factorsmetabolic phenotypemetabolic profilemetabolomemetabolomicsmetatranscriptomicsmicrobialmicrobiomemultimodal datanutritionpersonalized interventionprecision nutritionpreventprogramspublic databasequality assuranceresponsesocialsuccesstimelinetooltranscriptomics
项目摘要
Abstract (Metabolomics and Clinical Assay Center, MCAC)
Determining how individuals differ in their metabolism, and in their response to dietary intake, is critical to
developing personalized intervention strategies for preventing and delaying the onset of chronic diseases such
as obesity, diabetes, cardiovascular disease, and cancer. The MCAC will a) acquire and process high quality
targeted and untargeted metabolomics data, b) prioritize, predict, and confirm the identity of unknown peaks, c)
provide CLIA certified clinical assays, d) collaborate with the Common Fund Data Ecosystem, e) construct a data
infrastructure which ensures FAIRness and enables interoperability of the data with other Common Fund data
sets, and f) collaboratively work with the NIH Common Fund Nutrition for Precision Health (NPH) Consortium.
The MCAC brings an outstanding team of investigators from 3 UNC Systems Universities that are co-located on
the North Carolina Research Campus (NCRC) and Duke University. Dr. Susan Sumner (UNC Chapel Hill,
Nutrition Research Institute, NCRC, Untargeted Metabolomics) will serve as the PI with support from expert
scientists who specialize in nutrition and targeted metabolomics of host metabolism (Dr. Christopher Newgard,
Director, Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute), dietary
interventions and targeted phytochemical analysis (Dr. Colin Kay, North Carolina State University, NCRC), CLIA
certified clinical assays (Dr. Steven Cotten, UNCCH), and Computational Metabolomics (Dr. Xiuxia Du, UNC
Charlotte, NCRC). Our team provides a unique combination of long-standing expertise in metabolomics
technologies, coupled with deep knowledge of nutrition, metabolic physiology, and chronic disease mechanisms.
We are experienced with the application of targeted and untargeted metabolomics in large-scale clinical and
epidemiology studies, including in other NIH Consortia. We have used metabolomics to define metabolic
signatures and pathways associated with dietary intake, nutrition assessments, demographics, lifestyle factors,
microbial populations, genetics, transcriptomics, clinical assays, and clinical phenotypes of health and wellness.
We have developed comprehensive informatics capabilities for targeted and untargeted metabolomics and
exposome research. We have developed an online mass spectral knowledge base resource for prioritizing and
predicting unknown metabolites by leveraging publicly available data. Our high quality MCAC datasets produced
under fine-tuned protocols with quality control and quality assurance metrics, will be essential for success of the
NPH Consortium. The MCAC will provide data and expert biological interpretation in exploration of the
heterogeneity in metabolism among study subjects, providing a roadmap that will help explain why individuals
differ in their metabolic responses to dietary interventions, and what this portends for future disease risk. The
MCAC will provide a robust data set to the Artificial Intelligence for Multimodal Data Modeling and Bioinformatics
Center for use in development of algorithms to predict individual dietary responses that can ultimately be
translated for design of targeted dietary interventions to improve health and quality of life.
摘要(MCAC代谢组学和临床测定中心)
确定个体如何在新陈代谢上以及对饮食摄入的反应时如何差异,对
制定个性化干预策略,以防止和延迟慢性病的发作
作为肥胖,糖尿病,心血管疾病和癌症。 MCAC将a)获取和处理高质量
靶向和未靶向的代谢组学数据,b)优先级,预测和确认未知峰的身份,c)
提供CLIA认证的临床测定,d)与普通基金数据生态系统合作,e)构建数据
确保公平性并实现数据互操作性与其他常见基金数据的互操作性
集合和f)与NIH普通基金精准健康(NPH)财团合作。
MCAC带来了来自3所UNC系统大学的一支杰出的调查员团队
北卡罗来纳州研究校园(NCRC)和杜克大学。苏珊·萨姆纳(Susan Sumner)博士(UNC教堂山,
NCRC营养研究所,未靶向代谢组学)将在专家的支持下作为PI
专门从事营养和针对宿主代谢的代谢组学的科学家(克里斯托弗·纽格德博士,
莎拉·W·斯特德曼营养与代谢中心主任,杜克分子生理学研究所),饮食
干预和有针对性的植物化学分析(北卡罗来纳州立大学的Colin Kay博士,NCRC),CLIA
认证的临床测定法(UNCCH的Steven Cotten博士)和计算代谢组学(Xiuxia du博士,UNC
夏洛特,NCRC)。我们的团队提供了代谢组学长期专业知识的独特组合
技术,再加上对营养,代谢生理和慢性疾病机制的深入了解。
我们在大规模临床中应用有针对性和无靶向代谢组学的经验
流行病学研究,包括其他NIH联盟。我们已经使用代谢组学来定义代谢
与饮食摄入,营养评估,人口统计,生活方式因素相关的签名和途径,
微生物种群,遗传学,转录组学,临床测定和健康和保健的临床表型。
我们已经为有针对性和无靶的代谢组学开发了全面的信息能力,
外向研究。我们已经开发了一种在线质谱知识库资源,用于优先级和
通过利用公共可用数据来预测未知代谢产物。我们生产的高质量MCAC数据集
在具有质量控制和质量保证指标的微调协议下,对于成功的成功至关重要
NPH财团。 MCAC将提供数据和专家生物学解释,以探索
研究学科之间的代谢异质性,提供路线图,这将有助于解释为什么个人
他们对饮食干预措施的代谢反应不同,这对未来疾病风险预示了什么。这
MCAC将为多模式数据建模和生物信息学的人工智能提供强大的数据集
用于开发算法的使用中心,以预测最终可以成为的个体饮食反应
翻译以设计有针对性的饮食干预措施,以改善健康和生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSAN J SUMNER其他文献
SUSAN J SUMNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSAN J SUMNER', 18)}}的其他基金
Year 2, Targeted and Clinical Assay Supplement to the NPH MCAC
第 2 年,NPH MCAC 的靶向和临床检测补充
- 批准号:
10867046 - 财政年份:2023
- 资助金额:
$ 470.19万 - 项目类别:
Eastern Regional Comprehensive Metabolomics Resource Core
东部地区综合代谢组学资源核心
- 批准号:
9452800 - 财政年份:2012
- 资助金额:
$ 470.19万 - 项目类别:
RTI's Regional Comprehensive Metabolomics Resource Center
RTI 区域综合代谢组学资源中心
- 批准号:
8894895 - 财政年份:2012
- 资助金额:
$ 470.19万 - 项目类别:
相似国自然基金
氨基酸转运体调控非酒精性脂肪肝的模型建立及机制研究
- 批准号:32371222
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
特定肠道菌种在氨基酸调控脂质代谢中的作用与机制研究
- 批准号:82300940
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群紊乱导致支链氨基酸减少调控Th17/Treg平衡相关的肠道免疫炎症在帕金森病中的作用和机制研究
- 批准号:82301621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氨基酸调控KDM4A蛋白N-末端乙酰化修饰机制在胃癌化疗敏感性中的作用研究
- 批准号:82373354
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Integrative deep learning algorithms for understanding protein sequence-structure-function relationships: representation, prediction, and discovery
用于理解蛋白质序列-结构-功能关系的集成深度学习算法:表示、预测和发现
- 批准号:
10712082 - 财政年份:2023
- 资助金额:
$ 470.19万 - 项目类别:
UBIQUIBODY PLATFORM FOR TARGETED DEGRADATION OF ONCOGENIC FUSION PROTEINS
用于靶向降解致癌融合蛋白的 Ubiquibody 平台
- 批准号:
10806354 - 财政年份:2023
- 资助金额:
$ 470.19万 - 项目类别:
Data Mining and Machine Learning Guided QM/MM and QM-Cluster Modeling of Enzymatic Reactions
数据挖掘和机器学习引导的酶反应 QM/MM 和 QM 簇建模
- 批准号:
10685949 - 财政年份:2022
- 资助金额:
$ 470.19万 - 项目类别:
Pathophysiology of DYT1 dystonia: Targeted Mouse Models
DYT1 肌张力障碍的病理生理学:靶向小鼠模型
- 批准号:
10563819 - 财政年份:2022
- 资助金额:
$ 470.19万 - 项目类别:
A Phylodynamic Artificial Intelligence framework to predict evolution of SARS-CoV-2 variants of concern in Immunocompromised persons with HIV (PhAI-CoV)
用于预测免疫功能低下的 HIV 感染者 (PhAI-CoV) 中关注的 SARS-CoV-2 变异体进化的系统动力学人工智能框架
- 批准号:
10481017 - 财政年份:2022
- 资助金额:
$ 470.19万 - 项目类别: