Biomedical Image Computing and Informatics Cluster

生物医学图像计算与信息学集群

基本信息

  • 批准号:
    9273767
  • 负责人:
  • 金额:
    $ 194.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

Abstract The Biomedical Image Computing and Informatics Cluster (BICIC) will meet the rapidly growing needs of biomedical image computing research at Penn, and at the Center for Biomedical Image Computing in particular, and of the center's network of NIH-funded collaborating studies. Biomedical image computing faces several challenges. Increased algorithmic complexity demands computationally intensive computing and data mining of large collections of imaging, clinical and genetic data from growing patient populations is needed in order to discover biologically and clinically important relationships. These challenges underline the need for the advanced computing and storage facilities that the BICIC will provide. The proposed instrument represents an approximate 7-fold increase over the currently available resources, allowing both a more rapid execution of existing computerized analyses and providing the ability to explore methods that are currently infeasible with current equipment. The availability of this computing power in a single facility, instead of scattered resources of individual labs, will enable collaboration on algorithms, programming methods, datasets, and processing techniques that is not currently possible. The proposed server will provide a platform for developers and users of these sophisticated and demanding algorithms to push the envelope of biomedical image computing science to new levels. The proposed supercomputer will allow for high throughput analysis of scans, accelerating knowledge discovery and design of further analyses. The contribution of such a system to basic scientific research will be immense, as many scientific projects that are now infeasible, or which require computation measured in weeks or months, will produce results within minutes or days. The facility will encourage rapid development of complex image and connectomic analysis, pattern recognition, and data mining algorithms, often working on high- dimensional multi-parametric data, thereby allowing us to maximize the amount and accuracy of information gathered from biomedical images. Data mining of large databases and of complex data will expose new relationships between genotypes and phenotypes, and will potentially reveal subtle characteristics of certain pathologies that have clinical values. It will also aid Penn's strong focus on translational research in the field of medical imaging, which is currently limited by the lack of a sufficiently powerful computer system to facilitate the demanding imaging studies. The basic and clinical research that the proposed computational server will enable is expected to have a very significant clinical impact, underlining the importance of the project.
抽象的 生物医学图像计算和信息学集群(BICIC)将满足快速增长的需求 宾夕法尼亚大学和生物医学图像计算中心的生物医学图像计算研究 特别是,以及该中心由 NIH 资助的合作研究网络。生物医学图像 计算面临着一些挑战。算法复杂性增加需要计算 对大量成像、临床和遗传数据进行密集计算和数据挖掘 为了发现具有生物学和临床重要性的疾病,需要不断增加的患者群体 关系。这些挑战凸显了对先进计算和存储设施的需求 BICIC 将提供。拟议的工具代表了大约 7 倍的增长 当前可用的资源,允许更快速地执行现有的计算机化 分析并提供探索当前不可行的方法的能力 设备。这种计算能力可在单个设施中使用,而不是在分散的资源中 各个实验室的合作将实现算法、编程方法、数据集和 目前无法实现的加工技术。拟议的服务器将提供一个平台 这些复杂且要求严格的算法的开发人员和用户突破了极限 将生物医学图像计算科学提升到新的水平。拟议的超级计算机将允许高 扫描的吞吐量分析,加速知识发现和进一步分析的设计。这 这样一个系统对基础科学研究的贡献将是巨大的,因为许多科学项目 现在不可行的,或者需要以周或月为单位进行计算的,将产生 几分钟或几天内即可得到结果。该设施将鼓励复杂图像和 连接组分析、模式识别和数据挖掘算法,通常致力于高 维度多参数数据,从而使我们能够最大限度地提高数据的数量和准确性 从生物医学图像收集的信息。大型数据库和复杂数据的数据挖掘 将揭示基因型和表型之间的新关系,并有可能揭示微妙的 具有临床价值的某些病理特征。这也将有助于宾夕法尼亚大学集中精力 医学影像领域的转化研究目前由于缺乏 足够强大的计算机系统可以促进要求严格的成像研究。基本和 所提议的计算服务器将实现的临床研究预计将具有非常好的效果 显着的临床影响,强调了该项目的重要性。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automatic kidney segmentation in ultrasound images using subsequent boundary distance regression and pixelwise classification networks.
使用随后的边界距离回归和像素分类网络在超声图像中自动分割肾脏。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Yin, Shi;Peng, Qinmu;Li, Hongming;Zhang, Zhengqiang;You, Xinge;Fischer, Katherine;Furth, Susan L;Tasian, Gregory E;Fan, Yong
  • 通讯作者:
    Fan, Yong
Quantification of Thoracic Lymphatic Flow Patterns Using Dynamic Contrast-enhanced MR Lymphangiography.
使用动态对比增强 MR 淋巴管造影术量化胸腔淋巴流动模式。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    19.7
  • 作者:
    Zheng, Qiang;Itkin, Maxim;Fan, Yong
  • 通讯作者:
    Fan, Yong
Automatic Segmentation and Quantification of Upper Airway Anatomic Risk Factors for Obstructive Sleep Apnea on Unprocessed Magnetic Resonance Images.
在未处理的磁共振图像上自动分割和量化阻塞性睡眠呼吸暂停的上呼吸道解剖学危险因素。
  • DOI:
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Bommineni, Vikas L;Erus, Guray;Doshi, Jimit;Singh, Ashish;Keenan, Brendan T;Schwab, Richard J;Wiemken, Andrew;Davatzikos, Christos
  • 通讯作者:
    Davatzikos, Christos
Neurobiologically Based Stratification of Recent-Onset Depression and Psychosis: Identification of Two Distinct Transdiagnostic Phenotypes.
基于神经生物学的新发抑郁症和精神病的分层:两种不同的跨诊断表型的识别。
  • DOI:
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Lalousis, Paris Alexandros;Schmaal, Lianne;Wood, Stephen J;Reniers, Renate L E P;Barnes, Nicholas M;Chisholm, Katharine;Griffiths, Sian Lowri;Stainton, Alexandra;Wen, Junhao;Hwang, Gyujoon;Davatzikos, Christos;Wenzel, Julian;Kambeitz
  • 通讯作者:
    Kambeitz
Metabolic and physiologic magnetic resonance imaging in distinguishing true progression from pseudoprogression in patients with glioblastoma.
代谢和生理磁共振成像可区分胶质母细胞瘤患者的真实进展与假性进展。
  • DOI:
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Chawla, Sanjeev;Bukhari, Sultan;Afridi, Omar M;Wang, Sumei;Yadav, Santosh K;Akbari, Hamed;Verma, Gaurav;Nath, Kavindra;Haris, Mohammad;Bagley, Stephen;Davatzikos, Christos;Loevner, Laurie A;Mohan, Suyash
  • 通讯作者:
    Mohan, Suyash
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christos Davatzikos其他文献

Christos Davatzikos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christos Davatzikos', 18)}}的其他基金

The Neuroimaging Brain Chart Software Suite
神经影像脑图软件套件
  • 批准号:
    10581015
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
  • 批准号:
    10714834
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10421222
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
  • 批准号:
    10625442
  • 财政年份:
    2022
  • 资助金额:
    $ 194.58万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10475286
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10696100
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
  • 批准号:
    10825403
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10263220
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
  • 批准号:
    10028746
  • 财政年份:
    2020
  • 资助金额:
    $ 194.58万
  • 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
  • 批准号:
    10530196
  • 财政年份:
    2017
  • 资助金额:
    $ 194.58万
  • 项目类别:

相似国自然基金

先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
  • 批准号:
    52336006
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
极端高温环境流动沸腾技术的基础科学问题及关键材料研究
  • 批准号:
    52333015
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
含氮杂环配体聚合物结构精准调控与功能涂层材料表界面基础科学问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
耐高温高电压SiC功率器件灌封材料的多性能协同中的基础科学问题研究
  • 批准号:
    52272001
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
轻量化低脉动高可靠直驱式永磁电机系统基础科学问题与关键技术研究
  • 批准号:
    52237002
  • 批准年份:
    2022
  • 资助金额:
    269 万元
  • 项目类别:
    重点项目

相似海外基金

MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
  • 批准号:
    10736293
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
Dynamic single-cell analysis instrument to evaluate immune cell function
动态单细胞分析仪评估免疫细胞功能
  • 批准号:
    10699036
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
Multivalent protein-DNA nanostructures as synthetic blocking antibodies
多价蛋白质-DNA 纳米结构作为合成阻断抗体
  • 批准号:
    10587455
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
De novo design of a generalizable protein biosensor platform for point-of-care testing
用于即时测试的通用蛋白质生物传感器平台的从头设计
  • 批准号:
    10836196
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
  • 批准号:
    10576701
  • 财政年份:
    2023
  • 资助金额:
    $ 194.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了