Visualizing Remodeling at the Retinogeniculate Synapse
视网膜突触重塑的可视化
基本信息
- 批准号:7293314
- 负责人:
- 金额:$ 21.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-30 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAnimalsAreaAxonChromosome PairingCognition DisordersColorDNA Sequence RearrangementDevelopmentEpilepsyExhibitsEyeGoalsGrantIn VitroLabelLateral Geniculate BodyMapsMeasuresMental RetardationMorphologyMusNervous System PhysiologyNervous system structureNeuraxisNeuronal PlasticityNeuronsNumbersPhasePhysiologicalPresynaptic TerminalsRelative (related person)RetinaRetinalRetinal Ganglion CellsSensorySiteStructureSynapsesSynaptic plasticitySynaptophysinSystemTestingThalamic structureTimeTransgenic Micebasedayexperienceeye formationinsightnervous system disordernovelpostnatalpresynapticresponseretinal axonretinogeniculatescaffoldsegregationspatial relationshipsynaptic functionvisual deprivation
项目摘要
DESCRIPTION (provided by applicant): The formation of precise synaptic connections in the developing central nervous system (CNS) is critical for neurological function. At the retinogeniculate synapse, the connection between the retina and the lateral geniculate nucleus (LGN) of the thalamus, several developmental phases contribute to the formation, refinement and maturation of synatic circuits. After the initial mapping of a neuron to its target, there is gross morphological rearrangement of the axon arbors, as retinal ganglion cell (RGC) axons segregate into eye-specific layers. In the mouse, we have found that long after RGC axons segregate into the proper region of the LGN (postnatal day 8, p8), there are two periods of robust synaptic plasticity and remodeling. The first phase of synaptic plasticity occurs around the time of eye opening (p12-14) when some of the retinal inputs to a given LGN relay neuron strengthened while other inputs are pruned. A second, previously undetected, phase of plasticity occurs after p20, when the strength and connectivity of the retinogeniculate synapse becomes sensitive to sensory experience. Here we propose to study the morphological changes of retinal axon arbors that correspond to the two periods of synaptic plasticity. To do this, we will take advantage of available transgenic mice, and also generate new mouse lines in which a sparse subset of their RGCs co-express labels that tag axon arbors and the presynaptic marker, synaptophysin, using different fluorescent colors. Using these mice, we will examine changes in the morphology of select retinal ganglion cell axons and the relative distribution of the synaptic contacts within an axon arbor territory. These changes will be quantified as the connection remodels during normal development, and in response to visual deprivation during the second phase of plasticity. We will test the hypothesis that the RGC axon arbor structure is broader that functionally necessary and becomes stable around the time of eye opening. We will also examine whether the periods of robust synaptic plasticity represent rearrangements of synaptic release sites within a fixed axon arbor scaffold. A finding of a broad structural scaffold in which synaptic contacts can form, break and rearrange may represent a relatively novel type of neural plasticity. By relating structure to function, we hope to gain clearer understanding of the structural mechanisms that underlie synaptic development. The goal of this project is to understand the how neurons form connections, called synapses, with each other. We propose to visualize how the structure of the axon terminals of presynaptic neurons change during development and how axonal form corresponds with synaptic function. Understanding how normal wiring of the nervous system is accomplished will provide insight into neurological disorders that result from aberrant connections, such as some forms of mental retardation, cognitive disorders and epilepsy.
描述(由申请人提供):发展中枢神经系统(CNS)中精确突触连接的形成对于神经功能至关重要。在视网膜生成的突触中,丘脑的视网膜和侧向基因核(LGN)之间的连接有助于促进,有助于造型的神经回路的形成,完善和成熟。在将神经元映射到其靶标之后,视网膜神经节细胞(RGC)轴突将轴突的形态重排有总体形态重排,将其分离为特异性层。在小鼠中,我们发现在RGC轴突隔离到LGN的适当区域(产后第8天,P8)之后很长时间,有两个鲁棒的突触可塑性和重塑的时期。突触可塑性的第一阶段发生在开眼界的时间(P12-14)左右,当时某些视网膜输入对给定的LGN继电器神经元增强,而其他输入则被修剪。 p20之后发生了第二个以前未被发现的可塑性,当时视网膜生成突触的强度和连通性对感觉体验敏感。在这里,我们建议研究与突触可塑性两个时期相对应的视网膜轴突轴测的形态变化。为此,我们将利用可用的转基因小鼠,并生成新的鼠标线条,其中使用不同的荧光颜色,其RGCS共表达标签的稀疏子集将轴突Arbors和突触前标记物(突触突触标记)标记。使用这些小鼠,我们将检查选择视网膜神经节细胞轴突的形态变化以及轴突植物区域内突触接触的相对分布。这些变化将被量化为正常发育过程中的连接重塑,并响应可塑性第二阶段的视觉剥夺。我们将检验以下假设:RGC轴突轴突结构在功能上更为必要,并且在开眼界范围内变得稳定。我们还将检查稳健的突触可塑性的周期是否代表固定轴突arbor支架内突触释放位点的重排。发现突触接触可以形成,断裂和重新排列的广泛结构支架可能代表了一种相对新颖的神经可塑性。通过将结构与功能联系起来,我们希望对突触发展构成的结构机制有更清晰的了解。该项目的目的是了解神经元如何形成称为突触的连接方式。我们建议可以看到突触前神经元的轴突末端的结构在发育过程中的变化以及轴突形式如何与突触功能相对应。了解神经系统的正常接线将提供对因异常连接(例如某些形式的智力低下,认知障碍和癫痫)等神经系统疾病的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chinfei Chen其他文献
Chinfei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chinfei Chen', 18)}}的其他基金
Shared High-resolution Laser Scanning Microscope with Airyscan 2
与 Airyscan 2 共享高分辨率激光扫描显微镜
- 批准号:
10430985 - 财政年份:2022
- 资助金额:
$ 21.13万 - 项目类别:
How do neurons in the brain decide to refine their synaptic connections in vivo?
大脑中的神经元如何决定在体内完善其突触连接?
- 批准号:
10608368 - 财政年份:2017
- 资助金额:
$ 21.13万 - 项目类别:
Visual Circuit Regression and its Rescue in RTT Mouse Models
RTT 小鼠模型中的视觉回路回归及其拯救
- 批准号:
8888522 - 财政年份:2015
- 资助金额:
$ 21.13万 - 项目类别:
Probing Disrupted Cortico-thalamic Interactions in Autism Spectrum Disorders
探索自闭症谱系障碍中皮质丘脑相互作用的破坏
- 批准号:
7844347 - 财政年份:2009
- 资助金额:
$ 21.13万 - 项目类别:
Visualizing Remodeling at the Retinogeniculate Synapse
视网膜突触重塑的可视化
- 批准号:
7498382 - 财政年份:2007
- 资助金额:
$ 21.13万 - 项目类别:
相似国自然基金
臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
- 批准号:81901068
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
- 批准号:41971276
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
使用三代测序技术研究线粒体DNA非编码区域对其DNA复制和转录的调控
- 批准号:31701089
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
- 批准号:31771593
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 21.13万 - 项目类别:
Role of YB1 in health disparities in triple negative breast cancer
YB1 在三阴性乳腺癌健康差异中的作用
- 批准号:
10655943 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别:
A Pilot Study to Evaluate the Anabolic Effect of Testosterone on Muscles of the Pelvic Floor in Older Women with Stress Urinary Incontinence
评估睾酮对患有压力性尿失禁的老年女性盆底肌肉合成代谢影响的初步研究
- 批准号:
10716432 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别:
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别:
Functional analysis of an LGN-based visual prosthesis
基于 LGN 的视觉假体的功能分析
- 批准号:
10582766 - 财政年份:2023
- 资助金额:
$ 21.13万 - 项目类别: