Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
基本信息
- 批准号:10798520
- 负责人:
- 金额:$ 3.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-23 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAffectBehaviorBiological ProcessCellsComplexCouplesCytoskeletonData AnalysesDevelopmentEmbryonic DevelopmentEnvironmentEventExperimental DesignsExperimental ModelsExtracellular MatrixFeedbackFocal AdhesionsGenerationsGoalsIndividualIntegral Membrane ProteinIntegrinsLinkMechanicsMediatingModelingMolecularNatureNeoplasm MetastasisPatternProcessProteinsResearchResolutionRoleStress FibersTestingTimeTractioncell motilityexperimental studymathematical modelmechanotransductionmulti-scale modelingpredictive modelingpreferencetransmission processtumor
项目摘要
Project Summary
The over-arching goal of this proposal is to establish the predictive multi-scale mathematical model to decipher the
mechanism of durotaxis. Durotaxis is the preference of cells migrating toward a stiffer extracellular matrix (ECM) and has
important roles in many biological processes, ranging from embryo development to tumor metastasis. Focal adhesion (FA)
is the functional unit of durotaxis; it an integrin-based multi-protein transmembrane linkage, through which cell exerts actin
cytoskeleton-based traction force to tug the ECM and sense the stiffness. Despite the high relevance to biomedical
applications, it is not well understood how FA mediates mechanosensing of ECM stiffness and drives durotaxis, largely
because predictive mathematical models lag behind the descriptive experimental finding in the field. At single-FA level,
while previous models explain molecular-clutch behaviors in FA mechanosensing, they cannot explain how and why FA-
localized protein activities adapt to environments by distinctive spatial-temporal patterns (akin to footprints) that are
demonstrated to be essential for durotaxis. The full underlying mechanisms of the FA-localized “footprint” and its exact
roles in durotaxis are thus unknown. Further, durotaxis must coordinate movements of cell body and protrusion/retraction
of cell edge. While the FA-mediated tractions drive the cell body, how the FA-localized mechanosensing events coordinate
with the cell edge dynamics is unknown. Last, at a single-cell level, there exist many FAs at different developmental stages
at any time. It is not understood how the cell integrates the mechanosensing activities of individual FAs to drive durotaxis.
A predictive model that meaningfully engages with experiments is desirable and likely holds the key to decipher
durotaxis. Toward this goal, we have been and will uniquely integrate mathematical modeling in iterative dialogues with
experimental testing. The central hypothesis is: FA-localized spatial-temporal dynamics of the traction force generation and
transmission defines FA-mediated mechanosensing and durotaxis. The basis of this proposal is our previous findings. We
built the first mathematical model that captures the essence of entire FA maturation process. That is, FA evolves from a
nascent complex, the centripetally growing FA that couples the retrograde flux of branching actin network, to the mature
FA that transmits the stress fiber (SF)-mediated contractions onto ECM. This model uniquely links the FA-localized fine
features of protein activities – emerging from FA maturation process – to FA mechanosensing events. The model predicted
and was experimentally confirmed that a negative feedback between the elongation and contractility of the FA-engaging SF
underlies the FA-localized traction oscillation and mechanosensing of ECM stiffness. Ushered by these findings, our
specific aims are to determine: 1) how FA force-transmission and SF elongation cross-talk in FA mechanosensing; 2) how
FA mechanosensing affects cell edge protrusion/retraction, and 3) how cell integrates mechanosensation of individual FAs
to drive durotaxis. If successful, the proposed research would provide a quantitative platform interpret data and guide
durotaxis experimental designs, which has the multi-scale resolutions ranging from FA-localized dynamics, cell edge
protrusion/retraction, to cell movement at whole-cell level.
项目摘要
该提案的总体目标是建立预测性的多尺度数学模型,以破译
Durotaxis的机理。 Durotaxis是细胞偏向于较硬的细胞外基质(ECM)的偏好,并且具有
在许多生物过程中的重要作用,从胚胎发育到肿瘤转移。焦点粘附(FA)
是Durotaxis的功能单元;它是基于整合素的多蛋白跨膜链接,通过该链接执行肌动蛋白
基于细胞骨架的牵引力可以拉动ECM并感知刚度。尽管与生物医学有很高的相关性
应用,尚不清楚FA如何介导ECM刚度的机制,并驱动Durotaxis,很大程度上是
因为预测性数学模型滞后于现场的描述性实验发现。在单fa级别,
尽管以前的模型解释了FA机制中的分子离合器行为,但他们无法解释如何以及为什么FA-
局部蛋白质活性通过独特的时空模式(类似于足迹)适应环境
证明对Durotaxis至关重要。 FA定位的“足迹”的完整基础机制及其确切的
因此,在Durotaxis中的作用是未知的。此外,Durotaxis必须协调细胞体的运动和突出/缩回
细胞边缘。当FA介导的牵引力驱动细胞体时,FA定位机构如何坐标
使用细胞边缘动力学是未知的。最后,在单细胞级别,在不同的发育阶段存在许多FA
随时。它不了解细胞如何整合单个FAS的机理化活性以驱动Durotaxis。
有意义地参与实验的预测模型是可取的,并且可能是破译的关键
durotaxis。为了实现这一目标,我们一直并将在迭代对话中唯一地整合数学建模
实验测试。中心假设是:牵引力的产生和
传播定义了FA介导的机理和Durotaxis。该提案的基础是我们以前的发现。我们
构建了第一个捕获整个FA成熟过程的本质的数学模型。也就是说,FA从
新生的复合物是将分支肌动蛋白网络的逆行通量耦合到成熟的逆行通量
将应力纤维(SF)介导的收缩传递到ECM的FA。该模型独特地链接了FA局域网
蛋白质活性的特征 - 从FA成熟过程中出现到FA机理事件。该模型预测
并在实验上证实,FA参与SF的伸长和收缩性之间的负反馈
基础ECM刚度的FA定位牵引力振荡和机制。这些发现使我们的
具体目的是确定:1)FA机制中的FA力传输和SF伸长率如何; 2)如何
FA机制影响细胞边缘蛋白/缩回,3)细胞如何整合单个FAS的机制
驱动durotaxis。如果成功,拟议的研究将提供定量平台解释数据和指南
Durotaxis实验设计,其具有多尺度的分辨率,范围从FA定位动力学,细胞边缘
突出/缩回,向整个细胞水平的细胞运动。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solid-to-liquid phase transition in the dissolution of cytosolic misfolded-protein aggregates.
- DOI:10.1016/j.isci.2023.108334
- 发表时间:2023-12-15
- 期刊:
- 影响因子:5.8
- 作者:Tomaszewski, Alexis;Wang, Rebecca;Sandoval, Eduardo;Zhu, Jin;Liu, Jian;Li, Rong
- 通讯作者:Li, Rong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Liu其他文献
Jian Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Liu', 18)}}的其他基金
Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
- 批准号:
10562825 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Portable Fiber Lasers for Multiphoton Endoscope
用于多光子内窥镜的便携式光纤激光器
- 批准号:
7536162 - 财政年份:2008
- 资助金额:
$ 3.28万 - 项目类别:
A compact high-power ultrafast fiber laser system for high resolution and high se
紧凑型高功率超快光纤激光系统,具有高分辨率和高灵敏度
- 批准号:
7481349 - 财政年份:2008
- 资助金额:
$ 3.28万 - 项目类别:
A compact high power ultrashort femtosecond fiber laser for high resolution secon
紧凑型高功率超短飞秒光纤激光器,用于高分辨率秒
- 批准号:
7269228 - 财政年份:2007
- 资助金额:
$ 3.28万 - 项目类别:
Theoretical modeling on mechanochemical feedbacks of cellular processes
细胞过程机械化学反馈的理论模型
- 批准号:
9357232 - 财政年份:
- 资助金额:
$ 3.28万 - 项目类别:
Theoretical modeling on mechanochemical feedbacks of cellular processes
细胞过程机械化学反馈的理论模型
- 批准号:
8939857 - 财政年份:
- 资助金额:
$ 3.28万 - 项目类别:
Theoretical modeling on mechanochemical feedbacks of cellular processes
细胞过程机械化学反馈的理论模型
- 批准号:
8558026 - 财政年份:
- 资助金额:
$ 3.28万 - 项目类别:
Theoretical modeling on mechanochemical feedbacks of cellular processes
细胞过程机械化学反馈的理论模型
- 批准号:
8344881 - 财政年份:
- 资助金额:
$ 3.28万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
废胶粉-钢渣沥青路面抗滑性能演化行为与机理及对交通安全的影响研究
- 批准号:52368067
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高炉高温区焦炭中碳基质/矿物质演化行为及其对热性质影响机制
- 批准号:52374347
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自我欺骗行为中社会比较的影响:行为及电生理研究
- 批准号:32371126
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
流动补偿策略视角下权力感知对消费者行为的影响机制研究
- 批准号:72302017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
10738365 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别: