Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
基本信息
- 批准号:10736927
- 负责人:
- 金额:$ 35.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-25 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsActomyosinAddressAffectArthritisAtherosclerosisAutoimmune DiseasesBehaviorBehavior ControlBiochemicalBiological ProcessBiosensorCell PolarityCellsChemicalsCuesCytoskeletonDefectDevelopmentDiseaseDisseminated Malignant NeoplasmDrug TargetingElementsEnvironmentExperimental GeneticsF-ActinFamilyFeedbackFluorescence Resonance Energy TransferGlioblastomaGoalsGuanosine Triphosphate PhosphohydrolasesHL60ImageImmuneImmune responseIndividualInflammationInflammatoryLeukocytesLightMaintenanceMapsMeasurementMeasuresMediatingMediatorMicroscopyModelingMolecularMolecular TargetMutation AnalysisNatureNeoplasm MetastasisOpticsOutputPatternPlayProcessProteinsProteomicsRegulationResearchResolutionRoleSignal PathwaySignal TransductionStructureSurvival RateSystemTestingTissuesTravelcancer cellcell motilitycell typedepolymerizationexperimental studyimproved outcomemigrationneutrophilnew therapeutic targetnovel therapeutic interventionoptogeneticsreceptorrecruitredshiftresponserhorho GTP-Binding Proteinsscaffoldsegregationtool
项目摘要
PROJECT SUMMARY/ABSTRACT
Persistent cell migration is fundamental for immune responses, development, and the dissemination of cancer
cells. This migration requires the establishment and maintenance of stable cell polarity, even while a cell
integrates noisy heterogeneous cues from its environment. To achieve this, Rho family GTPases act as central
hubs that organize signaling cascades and cytoskeletal rearrangements into subcellular domains. Feedback and
crosstalk connections are thought to be central to this pattern-forming ability. However, the wiring of this circuit
is still incompletely understood, and there are major gaps in our understanding of how negative regulators limit
and separate spatial domains. Determining these molecular connections in migrating leukocytes would identify
new therapeutic targets for treating inflammation and would be broadly relevant for understanding Rho GTPase
function in many cell types and biological processes. Major obstacles to progress have been the fast timescale
and inherently spatial nature of the signaling system. To address these challenges, we have developed new
molecular tools that allow us to control the activity of individual key components with light while measuring the
response of a second component with subcellular resolution in live single cells. Our preliminary results indicate
that in addition to acting as outputs to move the cell, different actin assemblies are intimately involved in the
biochemical wiring of Rho GTPase crosstalk. We have identified an “actin-gated” crosstalk connection between
RhoA and Cdc42, and we have identified the protein Arhgap30 as a previously unappreciated primary regulator
of Cdc42 that is critical for polarization and migration in leukocytes. We hypothesize that different actin
assemblies act as scaffolds to localize regulators of Rho GTPase crosstalk, creating subcellular zones with
distinct signal wiring to promote stable cell polarity. Specifically, we aim to 1) determine how branched actin
assembly regulates Cdc42 and RhoA activities in leukocyte cells, 2) determine how the local actin network
structure controls crosstalk between RhoA and Cdc42, and 3) determine the regulation and role of Arhgap30 in
crosstalk and polarity signaling. Our approach will combine new tool sets for optical control of signaling and
cytoskeletal components with simultaneous measurement of actin assemblies and Rho GTPase activities in
single cells. In combination, we will use chemical perturbations, mutational analysis, and biochemical
approaches to characterize molecular connections. Our long-term goals are to determine how reciprocal
regulation between actin and Rho GTPases creates robust polarity in multiple cell types, including leukocytes
and disseminating cancer cells. The proposed research will advance our basic understanding of how biochemical
signaling pathways both generate and stabilize subcellular domains to control behaviors such as cell migration.
项目概要/摘要
持续的细胞迁移是免疫反应、癌症发展和传播的基础
这种迁移需要建立和维持稳定的细胞极性,即使是在细胞存在时也是如此。
整合来自环境的嘈杂异质线索 为了实现这一目标,Rho 家族 GTPases 发挥着核心作用。
将信号级联和细胞骨架重排组织成亚细胞域的中枢。
串扰连接被认为是这种图案形成能力的核心,但是该电路的布线。
仍然不完全被理解,并且我们对负监管机构如何限制的理解存在重大差距
确定迁移白细胞中的这些分子连接将识别出不同的空间域。
治疗炎症的新治疗靶点,与了解 Rho GTPase 具有广泛的相关性
在许多细胞类型和生物过程中发挥作用的主要障碍是快速的时间尺度。
为了应对这些挑战,我们开发了新的信号系统。
分子工具使我们能够在测量光的同时控制各个关键成分的活性
我们的初步结果表明,第二个成分在活单细胞中具有亚细胞分辨率。
除了充当移动细胞的输出之外,不同的肌动蛋白组件还密切参与
Rho GTPase 串扰的生化布线 我们已经确定了 Rho GTPase 串扰之间的“肌动蛋白门控”串扰连接。
RhoA 和 Cdc42,并且我们已经确定蛋白质 Arhgap30 是以前未被重视的主要调节因子
Cdc42 对白细胞的极化和迁移至关重要。
组件充当支架来定位 Rho GTPase 串扰的调节器,从而创建亚细胞区域
具体来说,我们的目标是 1) 确定肌动蛋白的分支方式。
组装调节白细胞中的 Cdc42 和 RhoA 活性,2) 决定局部肌动蛋白网络如何
结构控制 RhoA 和 Cdc42 之间的串扰,3) 确定 Arhgap30 在
我们的方法将结合用于信号传输和极性信号光学控制的新工具集。
细胞骨架成分,同时测量肌动蛋白组装和 Rho GTPase 活性
结合起来,我们将使用化学扰动、突变分析和生化分析。
我们的长期目标是确定分子连接的相互关系。
肌动蛋白和 Rho GTP 酶之间的调节在多种细胞类型(包括白细胞)中产生强大的极性
拟议的研究将增进我们对生物化学如何传播的基本了解。
信号通路产生并稳定亚细胞结构域以控制细胞迁移等行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Ryan Collins其他文献
Sean Ryan Collins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
低频超声场下肉品肌动球蛋白敏感结构域及其构象变化的作用机制
- 批准号:31901612
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 35.69万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 35.69万 - 项目类别:
Role of the S100 Family of Proteins in Lens Physiology and Cataract
S100 蛋白家族在晶状体生理学和白内障中的作用
- 批准号:
10560827 - 财政年份:2023
- 资助金额:
$ 35.69万 - 项目类别:
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 35.69万 - 项目类别:
Molecular and Cell Biological Foundations of Proteostress-Induced Neuronal Extrusion
蛋白质应激诱导的神经元挤压的分子和细胞生物学基础
- 批准号:
10753902 - 财政年份:2023
- 资助金额:
$ 35.69万 - 项目类别: