An extensible brain knowledge base and toolset spanning modalities for multi-species data-driven cell types
可扩展的大脑知识库和工具集,涵盖多物种数据驱动细胞类型的模式
基本信息
- 批准号:10686977
- 负责人:
- 金额:$ 213.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAdultAnatomyAtlasesBRAIN initiativeBrainCellsCensusesClassificationCommunitiesDataData SetDerivation procedureDevelopmentDimensionsDiseaseDisparateEcosystemEducational workshopEventEvolutionFAIR principlesFeedbackFosteringGenerationsGerm CellsGoalsGraphHealthHumanInformation ResourcesInfrastructureIngestionKnowledgeLibrariesLinkLongevityMachine LearningMapsModalityMolecularMorphologyMotor CortexMusNeurosciencesOntologyProtocols documentationPublicationsPythonsResearch PersonnelResourcesScienceScientistSourceStandardizationStructureTaxonomyTrainingTransgenic OrganismsUpdateViralVisualizationWorkbrain cellcell typecommunity based participatory researchdata archivedata integrationdata modelingdata visualizationepigenomicsflexibilityimprovedknowledge baseknowledge graphknowledge integrationmultimodal datamultimodalitynonhuman primateprogramsprototypetooltranscriptomicstrustworthinessweb app
项目摘要
Project Summary
BRAIN Initiative Cell Census Network (BICCN) is completing a comprehensive cell census of the adult mouse
brain, and BRAIN Initiative Cell Atlas Network (BICAN) will extend this work with emphasis on human and non-
human primates. Effectively organizing, summarizing, accessing, and refining these atlases is critical to
maximizing their impact on science. This proposal is to develop an extensible Brain Cell Knowledge Base
(BCKB) to ingest and standardize comprehensive cell type information from BICAN’s development of a
multimodal, multi-species brain cell atlas and disseminate that atlas as an open and interactive community
resource for advancing knowledge of the brain. The BCKB will be initialized during this project with multi-
dimensional brain cell type classifications from BICCN and will expand as data and knowledge are produced by
BICAN researchers.
Under Aim 1, we will create an adaptive knowledge graph for linking brain cell information. Spatial aggregation
will be done using common coordinate frameworks. A flexible graph-based data model will capture discrete and
continuous cell type relationships. The work will start with cross-species MOp data and comprehensive whole-
brain mouse datasets from BICCN and later extend into BICAN’s whole-brain molecular and spatial
transcriptomics data in human and non-human primates as such data becomes available. Anchoring of
taxonomies in single cell molecular and spatial transcriptomics provides a robust framework for integrating
multimodal data that is spatially mapped and/or cell types mapped. An ecosystem of tools for curating,
annotating, mapping, and visualization of cell type data will be created in Aim 2. We will build and extend tools,
such as the initial Cell Types Cards showcasing BICCN’s MOp results, so BICAN teams and public labs can
share and refine brain cell type taxonomies and anatomical integration. The tools framework developed for this
aim will provide a central hub, akin to an “app store,” to access our tools and others from the community to
interact with cell type data. This connected tools framework will streamline scientific workflows and encourage
FAIR practices. As part of Aim 3, we will develop an infrastructure to link brain cell data and knowledge. This
infrastructure will enable ingesting, storing, searching, and curating neuroscientific information from multiple
sources into a linked information platform. This knowledge infrastructure will help connect disparate pieces of
cell type information using expert annotations, machine-learning inferences, and derivations using provenance
mechanisms. We will use Allen Institute’s Brain Knowledge Platform for initial implementation. Finally, in Aim 4
we will gather, curate, and integrate information and knowledge from BICAN teams by conducting annual hands-
on training and feedback workshops. These events will create engagement within and outside BICAN projects
and foster community-based evolution, sustainability, and governance.
项目摘要
脑启动细胞普查网络(BICCN)正在完成成年小鼠的全面细胞普查
大脑和大脑启动细胞图集网络(BICAN)将扩展这项工作,重点是人类和非人类和非
人类隐私。有效地组织,总结,访问和完善这些图书馆对
最大化他们对科学的影响。该建议是建立可扩展的脑细胞知识基础
(BCKB)从Bican开发的摄入和标准化全面的单元类型信息
多模式的多种物种脑细胞地图集,并将其作为一个开放式互动社区传播
促进大脑知识的资源。 BCKB将在此项目中初始化
BICCN的维度脑细胞类型分类,并将随着数据和知识而扩展
比肯研究人员。
在AIM 1下,我们将创建一个自适应知识图,以连接脑细胞信息。空间聚集
将使用通用坐标框架完成。灵活的基于图的数据模型将捕获离散和
连续的细胞类型关系。这项工作将从跨物种的拖把数据和全面的整体开始
BICCN的脑鼠标数据集,后来延伸到Bican的全脑分子和空间
作为此类数据的人类和非人类素数中的转录组学数据可用。锚定
单细胞分子和空间转录组学中的分类学为整合提供了强大的框架
在空间映射和/或单元格映射的多模式数据。一个用于策划工具的生态系统,
将在AIM 2中创建细胞类型数据的注释,映射和可视化。我们将构建和扩展工具,
例如最初的单元类型卡展示了BICCN的拖把结果,因此Bican团队和公共实验室可以
共享和完善脑细胞类型分类法和解剖整合。为此开发的工具框架
AIM将提供一个类似于“应用商店”的中央枢纽,以访问我们的工具以及从社区到
与单元类型数据相互作用。这种连接的工具框架将简化科学工作流程并鼓励
公平的做法。作为AIM 3的一部分,我们将开发一个基础架构,以将脑细胞数据和知识联系起来。这
基础架构将使来自多个的摄入,存储,搜索和策划神经科学信息
源用于链接的信息平台。这些知识基础设施将有助于连接不同的部分
使用专家注释,机器学习信息和派生的细胞类型信息
机制。我们将使用艾伦学院的大脑知识平台进行初步实施。最后,在目标4中
我们将通过每年的动手来收集,策划和整合BICAN团队的信息和知识。
关于培训和反馈研讨会。这些事件将在BICAN项目内部和外部创造参与度
以及基于社区的发展,可持续性和治理。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain.
- DOI:10.1038/s41586-023-06812-z
- 发表时间:2023-12
- 期刊:
- 影响因子:64.8
- 作者:Yao, Zizhen;van Velthoven, Cindy T. J.;Kunst, Michael;Zhang, Meng;Mcmillen, Delissa;Lee, Changkyu;Jung, Won;Goldy, Jeff;Abdelhak, Aliya;Aitken, Matthew;Baker, Katherine;Baker, Pamela;Barkan, Eliza;Bertagnolli, Darren;Bhandiwad, Ashwin;Bielstein, Cameron;Bishwakarma, Prajal;Campos, Jazmin;Carey, Daniel;Casper, Tamara;Chakka, Anish Bhaswanth;Chakrabarty, Rushil;Chavan, Sakshi;Chen, Min;Clark, Michael;Close, Jennie;Crichton, Kirsten;Daniel, Scott;Divalentin, Peter;Dolbeare, Tim;Ellingwood, Lauren;Fiabane, Elysha;Fliss, Timothy;Gee, James;Gerstenberger, James;Glandon, Alexandra;Gloe, Jessica;Gould, Joshua;Gray, James;Guilford, Nathan;Guzman, Junitta;Hirschstein, Daniel;Ho, Windy;Hooper, Marcus;Huang, Mike;Hupp, Madie;Jin, Kelly;Kroll, Matthew;Lathia, Kanan;Leon, Arielle;Li, Su;Long, Brian;Madigan, Zach;Malloy, Jessica;Malone, Jocelin;Maltzer, Zoe;Martin, Naomi;Mccue, Rachel;Mcginty, Ryan;Mei, Nicholas;Melchor, Jose;Meyerdierks, Emma;Mollenkopf, Tyler;Moonsman, Skyler;Nguyen, Thuc Nghi;Otto, Sven;Pham, Trangthanh;Rimorin, Christine;Ruiz, Augustin;Sanchez, Raymond;Sawyer, Lane;Shapovalova, Nadiya;Shepard, Noah;Slaughterbeck, Cliff;Sulc, Josef;Tieu, Michael;Torkelson, Amy;Tung, Herman;Valera Cuevas, Nasmil;Vance, Shane;Wadhwani, Katherine;Ward, Katelyn;Levi, Boaz;Farrell, Colin;Young, Rob;Staats, Brian;Wang, Ming-Qiang Michael;Thompson, Carol L.;Mufti, Shoaib;Pagan, Chelsea M.;Kruse, Lauren;Dee, Nick;Sunkin, Susan M.;Esposito, Luke;Hawrylycz, Michael J.;Waters, Jack;Ng, Lydia;Smith, Kimberly;Tasic, Bosiljka;Zhuang, Xiaowei;Zeng, Hongkui
- 通讯作者:Zeng, Hongkui
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Satrajit Sujit Ghosh其他文献
Satrajit Sujit Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Satrajit Sujit Ghosh', 18)}}的其他基金
Nobrainer: A robust and validated neural network tool suite for imagers
Nobrainer:适用于成像仪的强大且经过验证的神经网络工具套件
- 批准号:
10021957 - 财政年份:2020
- 资助金额:
$ 213.47万 - 项目类别:
DANDI: Distributed Archives for Neurophysiology Data Integration
DANDI:神经生理学数据集成的分布式档案
- 批准号:
10629424 - 财政年份:2019
- 资助金额:
$ 213.47万 - 项目类别:
DANDI: Distributed Archives for Neurophysiology Data Integration
DANDI:神经生理学数据集成的分布式档案
- 批准号:
9795271 - 财政年份:2019
- 资助金额:
$ 213.47万 - 项目类别:
DANDI: Distributed Archives for Neurophysiology Data Integration
DANDI:神经生理学数据集成的分布式档案
- 批准号:
10393510 - 财政年份:2019
- 资助金额:
$ 213.47万 - 项目类别:
DANDI: Distributed Archives for Neurophysiology Data Integration
DANDI:神经生理学数据集成的分布式档案
- 批准号:
9981835 - 财政年份:2019
- 资助金额:
$ 213.47万 - 项目类别:
Nipype: Dataflows for Reproducible Biomedical Research
Nipype:可重复生物医学研究的数据流
- 批准号:
9053094 - 财政年份:2016
- 资助金额:
$ 213.47万 - 项目类别:
DISSEMINATION OF CROSS-PLATFORM SOFTWARE FOR ARTIFACT DETECTION AND REGION OF INT
伪影检测和INT区域跨平台软件的传播
- 批准号:
7501200 - 财政年份:2008
- 资助金额:
$ 213.47万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Heart-brain MRI for the evaluation of hemodynamic coupling in aging and Alzheimer's disease
心脑 MRI 用于评估衰老和阿尔茨海默氏病的血流动力学耦合
- 批准号:
10571411 - 财政年份:2023
- 资助金额:
$ 213.47万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 213.47万 - 项目类别:
Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
- 批准号:
10905596 - 财政年份:2023
- 资助金额:
$ 213.47万 - 项目类别:
Velocity-Selective Arterial Spin Labeling based Perfusion Mapping for Alzheimer's disease
基于速度选择性动脉自旋标记的阿尔茨海默病灌注图
- 批准号:
10662909 - 财政年份:2023
- 资助金额:
$ 213.47万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 213.47万 - 项目类别: