Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
基本信息
- 批准号:10905596
- 负责人:
- 金额:$ 5.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAdultAffectAllelesAlzheimer&aposs DiseaseAutopsyAxonBehaviorBehavioralBindingBiological AssayBiomechanicsBrainBrain ConcussionBrain regionCalmodulinCalmodulin-Binding ProteinsCentral Nervous SystemCoculture TechniquesCognitiveCollaborationsConfocal MicroscopyCorpus CallosumCryo-electron tomographyDemyelinationsDevelopmentDiffuse Axonal InjuryElectron MicroscopyElectrophysiology (science)EngineeringFundingHeterogeneityHeterozygoteImageImaging TechniquesInjuryInterneuronsKnock-outKnockout MiceLabelLinkLiquid substanceLocationMAPT geneMechanical StressMechanicsMediatingMethodsMicrotubule DepolymerizationMicrotubule StabilizationMicrotubule-Associated Protein 2Microtubule-Associated ProteinsMicrotubulesModelingMorphologyMultiple SclerosisMusMyelinNeuronsOligodendrogliaOutcomePathologicProcessPropertyProteinsProteomicsRattusRecoveryRegulationReportingResearchRiskRoleSignal PathwaySmall Interfering RNAStructureSwellingSynaptic TransmissionTauopathiesTestingTissuesTransmission Electron MicroscopyVaricosityVirusVisualizationaxon injurybehavior testbehavioral impairmentcell typechronic traumatic encephalopathyhead impactin vivoinsightinterdisciplinary approachknock-downmild traumatic brain injurymouse modelnervous system disordernew therapeutic targetnoveloverexpressionpolypeptideprotein expressionrestraint
项目摘要
PROJECT SUMMARY
Little is known about the role of micromechanical stress in regulating morphology and function of
neurons in the central nervous system (CNS). Axonal varicosities (swelling or beading) are enlarged,
heterogeneous structures along axonal shafts, profoundly affecting axonal conduction and synaptic
transmission. They are a key pathological feature believed to represent slow accumulation of axonal damage
that occurs during irreversible degeneration, for example in mild traumatic brain injury (mTBI), Alzheimer’s
disease (AD), and multiple sclerosis. In the first funding period of this R01, we discovered that fluid mechanical
stress immediately and reversibly induced varicosities in unmyelinated axons of cultured CNS neurons, and we
further visualized varicosity induction in vivo. Most brain regions including the corpus callosum in healthy adults
contain both myelinated and unmyelinated axons, while myelin appears to protect the axon from initial
mechanical injury. Using a mouse model mimicking concussion, our new studies have found immediate
varicosity formation in unmyelinated axons of cortical neurons and delayed demyelination in the cortex after
mechanical impact. Our new results have also indicated that microtubule (MT)-associated protein 6 (MAP6)
regulates axonal varicosity formation through its properties of MT stabilization and Ca2+/calmodulin binding.
Based on our new findings, we hypothesize that mechanical impact immediately induces varicosity
formation in unmyelinated axons, which is restrained by MAP6-mediated MT stabilization and
subsequently promotes adjacent demyelination that increases axon vulnerability to second impact,
leading to a vicious cycle in repeated mTBI and hence worsened behavioral impairment. To test this
original hypothesis, we will use a multidisciplinary approach including mTBI and demyelination mouse models,
cell-type-specific overexpression, knockout and rescue, confocal and electron microscopy, behavioral testing,
electrophysiological recording, a versatile biomechanical assay, myelin coculture and state-of-the-art imaging
techniques. We will determine (Aim 1) whether mTBI-induced axonal varicosity formation and behavioral
impairment can be aggravated by MAP6 deletion and ameliorated by MAP6-mediated MT stabilization, (Aim 2)
how MAP6 regulates axonal varicosity initiation, recovery, location, heterogeneity and long-term fate through
distinct signaling pathways in partially myelinated axons, and (Aim 3) how MAP6 regulates oligodendrocyte
mechanosensation, and whether preexisting demyelination and/or preexisting axonal varicosities increase the
risk of injury from repeated mechanical impact. This project represents an underexplored research field with
many open questions. This research is significant because it will provide novel mechanistic insights into central
neuron mechanosensation and mTBI primary injury.
项目概要
关于微机械应力在调节形态和功能中的作用知之甚少。
中枢神经系统(CNS)的神经元增大,轴突静脉曲张(肿胀或串珠)。
沿轴突轴的异质结构,深刻影响轴突传导和突触
它们是一个关键的病理特征,被认为代表轴突损伤的缓慢积累。
发生在不可逆转的退化过程中,例如轻度创伤性脑损伤 (mTBI)、阿尔茨海默病
疾病(AD)和多发性硬化症 在这个 R01 的第一个资助期间,我们发现了流体力学。
应激立即且可逆地诱导培养的中枢神经系统神经元的无髓鞘轴突中的静脉曲张,并且我们
进一步可视化健康成人体内的大多数大脑区域(包括胼胝体)的静脉曲张诱导。
包含有髓鞘和无髓鞘轴突,而髓鞘质似乎可以保护轴突免受初始影响。
我们的新研究使用模拟脑震荡的小鼠模型发现了直接的机械损伤。
皮质神经元无髓鞘轴突的静脉曲张形成和皮质延迟脱髓鞘
我们的新结果还表明微管 (MT) 相关蛋白 6 (MAP6)
通过其 MT 稳定性和 Ca2+/钙调蛋白结合特性调节轴突静脉曲张的形成。
根据我们的新发现,我们发现机械冲击会立即引起静脉曲张
无髓鞘轴突的形成受到 MAP6 介导的 MT 稳定的抑制
随后促进邻近脱髓鞘,增加轴突对第二次冲击的脆弱性,
导致反复 mTBI 的恶性循环,从而加剧行为障碍。
最初的假设,我们将使用多学科方法,包括 mTBI 和脱髓鞘小鼠模型,
细胞类型特异性过度表达、敲除和拯救、共聚焦和电子显微镜、行为测试、
电生理记录、多功能生物力学测定、髓磷脂共培养和最先进的成像
我们将确定(目标 1)mTBI 是否诱发轴突静脉曲张的形成和行为。
MAP6 缺失会加剧损伤,而 MAP6 介导的 MT 稳定会改善损伤(目标 2)
MAP6 如何通过调节轴突变异的起始、恢复、位置、异质性和长期命运
部分髓鞘轴突中不同的信号通路,以及(目标 3)MAP6 如何调节少突胶质细胞
机械感觉,以及先前存在的脱髓鞘和/或先前存在的轴突静脉曲张是否会增加
该项目代表了一个尚未充分探索的研究领域。
这项研究意义重大,因为它将为中心提供新颖的机制见解。
神经元机械感觉和 mTBI 原发性损伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHEN GU其他文献
CHEN GU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHEN GU', 18)}}的其他基金
Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
- 批准号:
10599871 - 财政年份:2016
- 资助金额:
$ 5.7万 - 项目类别:
Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
- 批准号:
10362748 - 财政年份:2016
- 资助金额:
$ 5.7万 - 项目类别:
Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
- 批准号:
10211722 - 财政年份:2016
- 资助金额:
$ 5.7万 - 项目类别:
Polarized Initiation of Varicosity Formation in Central Neuron Mechanosensation
中枢神经元机械感觉中静脉曲张形成的极化起始
- 批准号:
9177341 - 财政年份:2016
- 资助金额:
$ 5.7万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Heart-brain MRI for the evaluation of hemodynamic coupling in aging and Alzheimer's disease
心脑 MRI 用于评估衰老和阿尔茨海默氏病的血流动力学耦合
- 批准号:
10571411 - 财政年份:2023
- 资助金额:
$ 5.7万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 5.7万 - 项目类别:
Velocity-Selective Arterial Spin Labeling based Perfusion Mapping for Alzheimer's disease
基于速度选择性动脉自旋标记的阿尔茨海默病灌注图
- 批准号:
10662909 - 财政年份:2023
- 资助金额:
$ 5.7万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 5.7万 - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 5.7万 - 项目类别: