Multi-Center Academic-Industrial Partnership for Personalized Al-Enabled High Count PET
个性化 Al 启用高计数 PET 的多中心学术-工业合作伙伴关系
基本信息
- 批准号:10682066
- 负责人:
- 金额:$ 66.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-05 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptionBilateralCaliforniaClinicClinicalClinical DataClinical InvestigatorComputer softwareDataData SetDiagnosisDiagnosticDoseEnvironmentEvaluationFeedbackGenerationsHealthcareHumanHybridsImageInjectionsInvestigationLabelLesionLiverMathematicsModelingNoiseOrganPatientsPerformancePhysiciansPositron-Emission TomographyProceduresProductionProviderResearchResearch PersonnelScanningServicesSiteStructureSystemTechniquesTestingTimeTrainingTranslatingTranslationsUniversity HospitalsValidationVendorVisualX-Ray Computed Tomographyartificial intelligence algorithmclinical decision-makingclinical imagingclinical practicedeep learningdeep learning modeldiagnostic accuracyexperienceimaging modalityimprovedindustry partnerlearning networklearning strategyreal world applicationreconstructionvirtualvirtual model
项目摘要
Abstract
High image noise degrades the diagnostic efficacy and quantitative accuracy of PET, as noise could easily
results in overestimation of SUV and cause false positive lesion detections in diagnosis. High image noise also
decreases the confidence of clinical decision making, leading to additional unnecessary follow-ups through other
imaging modalities and invasive procedure. Deep learning-based noise reduction has shown promises for PET
imaging. However, existing approaches only focus on converting low-count image (e.g. acquired through low-
dose injection or shorter scan time) to standard-count image in typical clinical scans. However, for both low-
count and the vast majority of routinely acquired clinical PET images with normal dose and scan time, there is
no approach to convert such clinical images to high-count images to further reduce the image noise, mainly due
to the challenge of obtaining high-count PET images as training labels. Another challenge in the real-world
application is to match the training data with the testing data, in terms of noise level, noise structure,
reconstruction parameters, scanner model, etc. Such matching is particularly challenging in a multi-center multi-
scanner setting. In this Academic-Industrial Partnership R01 project, we formed an ideal partnership between
Visage Imaging, a leading PACS company, and three leading academic centers (Yale, MGH, UC Davis) to
develop, evaluate, deploy, and translate robust deep learning methods to generate virtual-high-count PET
images in a highly personalized manner by taking into account the noise level of each organ in each patient, as
well as associated non-imaging patient information. The academic sites have access to a large number of high-
count data that are acquired either through long dynamic scans (at least 90 minutes) or by the ultra-sensitive
long axial field-of-view (FOV) Explorer scanner. The developed product would be deep learning networks that
can convert any clinical PET images data from all major vendors (Siemens, GE, United Imaging Healthcare
(UIH)) into virtual-high-count ultra-low noise images. Since Yale, MGH, and UC Davis are all serviced by Visage
Imaging, the developed deep learning technique can be seamlessly translated into Visage PACS
research/clinical servers for validation and evaluation, beta testing and user feedback, and ultimate translation
and regulatory filings. In Aim 1, we will develop deep learning models for virtual-high-count PET generation. In
Aim 2, we will evaluate and deploy the models into Visage research PACS server and evaluate virtual-high-count
PET in clinical environments. In Aim 3, we will integrate the developed virtual-high-count PET deep learning
models into the clinical production PACS server and generate regulatory documents and supporting data for
FDA 510(k).
抽象的
高图像噪声降低了PET的诊断功效和定量准确性,因为噪声很容易
导致高估SUV并在诊断中导致假阳性病变检测。高图像噪音也
降低了临床决策的信心,从而导致其他不必要的随访
成像方式和侵入性程序。基于深度学习的降噪表明了宠物的承诺
成像。但是,现有方法仅着眼于转换低计数图像(例如,通过低 - 获得
注射剂量或较短的扫描时间)至典型的临床扫描中标准计数图像。但是,对于两个低 -
计数和绝大多数常规获取的临床宠物图像正常剂量和扫描时间,有
没有方法可以将此类临床图像转换为高计数图像以进一步降低图像噪声,主要是由于
挑战以培训标签获得高计宠物图像。现实世界中的另一个挑战
应用程序将训练数据与测试数据匹配,以噪声水平,噪声结构,
重建参数,扫描仪模型等。在多中心多中心
扫描仪设置。在这个学术工业合作伙伴R01项目中,我们在
VISAGE IMAGING,一家领先的PACS公司和三个领先的学术中心(耶鲁大学,MGH,加州大学戴维斯分校)
开发,评估,部署和翻译强大的深度学习方法来生成虚拟高计宠物
通过考虑每个患者中每个器官的噪声水平,以高度个性化的方式图像
以及相关的非成像患者信息。学术网站可以访问大量高级
计算通过长时间动态扫描(至少90分钟)或通过超敏感的数据获取的数据
长轴向视野(FOV)Explorer扫描仪。开发的产品将是深度学习网络
可以转换所有主要供应商(西门子,GE,United Imaging Healthcare)的任何临床PET图像数据
(UIH))中的虚拟高点超低噪声图像。由于耶鲁大学,MGH和加州大学戴维斯分校都通过VISAGE服务
成像,开发的深度学习技术可以无缝地翻译成Visage PACS
用于验证和评估,Beta测试和用户反馈以及最终翻译的研究/临床服务器
和监管文件。在AIM 1中,我们将开发用于虚拟高量宠物生成的深度学习模型。在
AIM 2,我们将评估并将模型部署到VISAGE Research PACS服务器并评估虚拟最高计数
在临床环境中的宠物。在AIM 3中,我们将整合发达的虚拟高计宠物深度学习
模型进入临床生产PACS服务器并生成监管文档并支持数据
FDA 510(k)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAMSEY D. BADAWI其他文献
RAMSEY D. BADAWI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAMSEY D. BADAWI', 18)}}的其他基金
Basic applications for total-body PET in oncology
全身 PET 在肿瘤学中的基本应用
- 批准号:
9803729 - 财政年份:2019
- 资助金额:
$ 66.97万 - 项目类别:
Basic applications for total-body PET in oncology
全身 PET 在肿瘤学中的基本应用
- 批准号:
10248438 - 财政年份:2019
- 资助金额:
$ 66.97万 - 项目类别:
Basic applications for total-body PET in oncology
全身 PET 在肿瘤学中的基本应用
- 批准号:
10017942 - 财政年份:2019
- 资助金额:
$ 66.97万 - 项目类别:
EXPLORER: Changing the Molecular Imaging Paradigm with Total Body PET
EXPLORER:用全身 PET 改变分子成像范式
- 批准号:
9334154 - 财政年份:2015
- 资助金额:
$ 66.97万 - 项目类别:
EXPLORER: Changing the Molecular Imaging Paradigm with Total Body PET
EXPLORER:用全身 PET 改变分子成像范式
- 批准号:
9788409 - 财政年份:2015
- 资助金额:
$ 66.97万 - 项目类别:
EXPLORER: Changing the Molecular Imaging Paradigm with Total Body PET
EXPLORER:用全身 PET 改变分子成像范式
- 批准号:
9150516 - 财政年份:2015
- 资助金额:
$ 66.97万 - 项目类别:
Enabling technologies for ultra-high sensitivity PET scanners (PQ13)
超高灵敏度 PET 扫描仪的支持技术 (PQ13)
- 批准号:
8520273 - 财政年份:2012
- 资助金额:
$ 66.97万 - 项目类别:
Enabling technologies for ultra-high sensitivity PET scanners (PQ13)
超高灵敏度 PET 扫描仪的支持技术 (PQ13)
- 批准号:
8384670 - 财政年份:2012
- 资助金额:
$ 66.97万 - 项目类别:
Enabling technologies for ultra-high sensitivity PET scanners (PQ13)
超高灵敏度 PET 扫描仪的支持技术 (PQ13)
- 批准号:
8702118 - 财政年份:2012
- 资助金额:
$ 66.97万 - 项目类别:
相似国自然基金
面向个性化定制产品的双边平台供应链管理研究
- 批准号:72301063
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
混合不确定环境下的双边匹配行为决策理论与方法
- 批准号:72371153
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
数字平台中供需双边不完全信息动态匹配的机制设计研究
- 批准号:72373170
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于双边量化非线性系统的自适应控制理论及应用研究
- 批准号:62303023
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
权衡双边利益的知识密集型众包任务推荐研究:基于多任务深度学习
- 批准号:72301136
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
The Roles of Genetically Distinct Cortical Neuron Types in General-Anesthesia- and Sleep-Induced Slow Waves
遗传上不同的皮质神经元类型在全身麻醉和睡眠引起的慢波中的作用
- 批准号:
10601096 - 财政年份:2022
- 资助金额:
$ 66.97万 - 项目类别:
The Roles of Genetically Distinct Cortical Neuron Types in General-Anesthesia- and Sleep-Induced Slow Waves
遗传上不同的皮质神经元类型在全身麻醉和睡眠引起的慢波中的作用
- 批准号:
10449437 - 财政年份:2022
- 资助金额:
$ 66.97万 - 项目类别:
Improving language assessment in bilinguals with epilepsy using advanced neuroimaging and culturally-sensitive neuropsychological measures
使用先进的神经影像学和文化敏感的神经心理学措施改善双语癫痫患者的语言评估
- 批准号:
10284796 - 财政年份:2021
- 资助金额:
$ 66.97万 - 项目类别:
Improving language assessment in bilinguals with epilepsy using advanced neuroimaging and culturally-sensitive neuropsychological measures
使用先进的神经影像学和文化敏感的神经心理学措施改善双语癫痫患者的语言评估
- 批准号:
10652465 - 财政年份:2021
- 资助金额:
$ 66.97万 - 项目类别:
Biomechanical mapping of the optic nerve head and peripapillary sclera using high frequency ultrasonic elastography
使用高频超声弹性成像对视神经乳头和视乳头周围巩膜进行生物力学测绘
- 批准号:
10531275 - 财政年份:2021
- 资助金额:
$ 66.97万 - 项目类别: