Multiplex Imaging of Signaling Pathways in Cell Motility
细胞运动信号通路的多重成像
基本信息
- 批准号:10681274
- 负责人:
- 金额:$ 64.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AreaBiologyBiosensorCellsCellular biologyChemotaxisDataDevelopmentDiseaseFibroblastsFluorescence Resonance Energy TransferGuanosine Triphosphate PhosphohydrolasesHealthHumanHuman bodyImaging DeviceImmuneInflammatoryInvadedMacrophageModalityMolecularNeoplasm MetastasisNormal CellPathway interactionsProcessProteinsRoleSignal PathwaySignal TransductionSignaling ProteinSystemTechniquesTechnologyTimeVisualizationcell motilitychemokinedesignimaging approachmalignant breast neoplasmmigrationmolecular imagingmonomermultiplexed imagingneoplastic cellnoveloptogeneticsresponserho GTP-Binding Proteinstemporal measurementtooltumor
项目摘要
Abstract:
Fluorescent biosensor techniques in cell biology now allow for the real-time interrogation of molecular processes
as they occur inside living cells at spatial and temporal resolutions of microns and seconds, respectively. I
have a prior and continued focus on the development of novel Förster resonance energy transfer (FRET)-
based biosensor technologies that utilize monomeric fluorescent proteins for exceptional sensitivity and probe
reversibility. In addition, a single-chain construction is used to facilitate quantitative analysis. I recently pioneered
the near-infrared (NIR)-FRET biosensor modality, which included the first simultaneous, orthogonal visualization
of cyan-yellow fluorescent protein-based FRET and NIR-FRET biosensors in single living cells. The resulting
data were the first true multiplex analysis of two important molecular switches in living cells, the Rac1 and RhoA
GTPases. This analysis revealed the direct coordination of these GTPases during cell migration in real-time.
Herein, I propose to study the coordination of Rho GTPases associated with important signaling pathways
by designing new biosensors for specific signaling nodes and utilizing the direct multiplex FRET imaging
approach. Specifically, I will first target the local-level coordination of Rho GTPase signaling in fibroblast cells
during migration, chemotaxis, and directional guidance. The coordination of RhoA versus Rac1 GTPases in
fibroblasts will be investigated by determining the role of a downstream target protein, the formin mDia1, which
is hypothesized to coordinate RhoA and Rac1 during cell motility. The direct multiplex imaging approach will be
used to evaluate pairwise biosensor signals. In addition, the RhoA and Rac1 pathways will be perturbed with
optogenetic tools to determine the GTPase coordination that is important for controlling cellular morphodynamics.
Next, these approaches will be applied to two systems that have important implications for human health and
disease. First, macrophage motility and directional guidance, which requires the coordination of Rho GTPases
during the chemotactic response to inflammatory chemokines, will be studied. Then, the multiplex imaging and
perturbation approaches will be applied to breast cancer invasion and migration, which are critical to controlling
tumor metastasis. Collectively, the coordination between Rho GTPases and the associated molecular signaling
that governs cell motility will be identified through the development of new biosensors that enable direct multiplex
probing of signaling networks.
抽象的:
细胞生物学中的荧光生物传感器技术现在允许对分子过程进行实时询问
当它们发生在活细胞内部,分别是微米和秒的空间和临时分辨率。
在新型Förster共振能量传递(FRET)的发展上有先验和继续关注 -
利用单体荧光蛋白具有特殊敏感性并证明的基于生物传感器的技术
可逆性。此外,单链结构用于促进定量分析。我最近开创了开创性
近红外(NIR) - fret生物传感器模态,其中包括第一个同时可视化
单个活细胞中的青色黄色荧光蛋白基和NIR-FRET生物传感器的组合。结果
数据是活细胞中两个重要分子开关的第一个真实多重分析,Rac1和RhoA
GTPases。该分析揭示了这些GTPase在细胞迁移期间的直接配位。
在此,我建议研究与重要信号通路相关的Rho GTPases的协调
通过为特定信号节点设计新的生物传感器并使用直接的多重FRET成像
方法。具体而言,我将首先针对成纤维细胞中Rho GTPase信号的局部级别配位
在迁移,趋化性和方向指导期间。 Rhoa与Rac1 GTPases的协调
成纤维细胞将通过确定下游靶蛋白的作用,formin mdia1来研究成纤维细胞。
假设在细胞运动过程中协调RhoA和Rac1。直接的多重成像方法将是
用于评估成对生物传感器信号。此外,Rhoa和Rac1途径将受到干扰
确定GTPase配位的光遗传学工具对于控制细胞形态动力学很重要。
接下来,这些方法将应用于两个对人类健康具有重要意义的系统和
疾病。首先,巨噬细胞的运动性和定向指导,需要协调Rho GTPases
在对炎性趋化因子的趋化反应期间,将研究。然后,多重成像和
扰动方法将应用于乳腺癌的侵袭和迁移,这对于控制至关重要
肿瘤转移。总体而言,Rho GTPases与相关的分子信号之间的协调
控制细胞运动的情况将通过开发新的生物传感器来识别,这些生物传感器能够直接多重
探测信号网络。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
StarD13 negatively regulates invadopodia formation and invasion in high-grade serous (HGS) ovarian adenocarcinoma cells by inhibiting Cdc42.
- DOI:10.1016/j.ejcb.2021.151197
- 发表时间:2022-01
- 期刊:
- 影响因子:6.6
- 作者:Abdellatef S;Fakhoury I;Haddad MA;Jaafar L;Maalouf H;Hanna S;Khalil B;El Masri Z;Hodgson L;El-Sibai M
- 通讯作者:El-Sibai M
Metalloprotease ADAMTS-1 decreases cell migration and invasion modulating the spatiotemporal dynamics of Cdc42 activity.
- DOI:10.1016/j.cellsig.2020.109827
- 发表时间:2021-01
- 期刊:
- 影响因子:4.8
- 作者:de Assis Lima M;da Silva SV;Serrano-Garrido O;Hülsemann M;Santos-Neres L;Rodríguez-Manzaneque JC;Hodgson L;Freitas VM
- 通讯作者:Freitas VM
Spatial and temporal dynamics of RhoA activities of single breast tumor cells in a 3D environment revealed by a machine learning-assisted FRET technique.
- DOI:10.1016/j.yexcr.2021.112939
- 发表时间:2022-01-15
- 期刊:
- 影响因子:3.7
- 作者:Cheung BCH;Hodgson L;Segall JE;Wu M
- 通讯作者:Wu M
Multiplex Imaging of Rho GTPase Activities in Living Cells.
- DOI:10.1007/978-1-0716-1593-5_4
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Bhalla RM;Hülsemann M;Verkhusha PV;Walker MG;Shcherbakova DM;Hodgson L
- 通讯作者:Hodgson L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Louis Hodgson其他文献
Louis Hodgson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Louis Hodgson', 18)}}的其他基金
Multiplex Imaging of Signaling Pathways in Cell Motility
细胞运动信号通路的多重成像
- 批准号:
10457496 - 财政年份:2020
- 资助金额:
$ 64.07万 - 项目类别:
Multiplex Imaging of Signaling Pathways in Cell Motility
细胞运动信号通路的多重成像
- 批准号:
10224266 - 财政年份:2020
- 资助金额:
$ 64.07万 - 项目类别:
Multiplex Imaging of Signaling Pathways in Cell Motility
细胞运动信号通路的多重成像
- 批准号:
10471441 - 财政年份:2020
- 资助金额:
$ 64.07万 - 项目类别:
Multiplex Imaging of Signaling Pathways in Cell Motility
细胞运动信号通路的多重成像
- 批准号:
10581027 - 财政年份:2020
- 资助金额:
$ 64.07万 - 项目类别:
Rac1 regulates protrusion and invasion of breast cancers in 3D
Rac1 以 3D 方式调节乳腺癌的突出和侵袭
- 批准号:
9122808 - 财政年份:2014
- 资助金额:
$ 64.07万 - 项目类别:
Rac1 regulates protrusion and invasion of breast cancers in 3D
Rac1 以 3D 方式调节乳腺癌的突出和侵袭
- 批准号:
8751217 - 财政年份:2014
- 资助金额:
$ 64.07万 - 项目类别:
Rac1 regulates protrusion and invasion of breast cancers in 3D
Rac1 以 3D 方式调节乳腺癌的突出和侵袭
- 批准号:
8878203 - 财政年份:2014
- 资助金额:
$ 64.07万 - 项目类别:
RhoC GTPase regulates leading edge protrusion dynamics in breast carcinomas
RhoC GTPase 调节乳腺癌前缘突起动力学
- 批准号:
7861954 - 财政年份:2010
- 资助金额:
$ 64.07万 - 项目类别:
相似国自然基金
微塑料对农田土壤团聚体有机碳矿化的影响及其微生物学机制
- 批准号:42307050
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
树突状细胞应对不同维度细胞外基质迁移策略切换的力学生物学耦合机制研究
- 批准号:32371373
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
增氧灌溉对水稻籽粒灌浆的影响及生物学机制
- 批准号:32360530
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
微曝气调控有机固废厌氧发酵氨抑制效果及其微生物学机理
- 批准号:52306292
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
全氟化合物暴露通过影响脑结构导致情绪精神障碍的神经生物学机制研究
- 批准号:82371924
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The context-dependent role of Caveolin-1 as a driver of cellular adaptation in Ewing Sarcoma
Caveolin-1 作为尤文肉瘤细胞适应驱动因素的背景依赖性作用
- 批准号:
10662162 - 财政年份:2023
- 资助金额:
$ 64.07万 - 项目类别:
UPR Center for Incubator and Technology Transfer (UPRCITT)
UPR 孵化器和技术转让中心 (UPRCITT)
- 批准号:
10793133 - 财政年份:2023
- 资助金额:
$ 64.07万 - 项目类别:
2023 Liquid Crystals Gordon Research Conference & Gordon Research Seminar
2023年液晶戈登研究会议
- 批准号:
10683604 - 财政年份:2023
- 资助金额:
$ 64.07万 - 项目类别:
Cardiac ryanodine receptor and oxidative stress
心脏兰尼碱受体与氧化应激
- 批准号:
10833359 - 财政年份:2023
- 资助金额:
$ 64.07万 - 项目类别:
Rational design of a novel rapid diagnostic tool for coccidioidomycosis
合理设计新型球孢子菌病快速诊断工具
- 批准号:
10668184 - 财政年份:2023
- 资助金额:
$ 64.07万 - 项目类别: