The Nature of Working Memory Representations
工作记忆表征的本质
基本信息
- 批准号:10677812
- 负责人:
- 金额:$ 39.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AreaBehaviorBrainClinicalCodeCognitionCognitive remediationDataData AnalyticsDecision MakingDiagnosisDimensionsElderlyEvolutionFunctional disorderGoalsHumanImpaired cognitionKnowledgeLearningLeftMapsMeasuresMemoryMemory impairmentMental disordersMissionModelingMotionNatureNeurologicNeurosciences ResearchOutcomePathologicPatternPopulationPopulation DynamicsPropertyPsychiatric therapeutic procedurePublic HealthReadingResearchResearch PersonnelResistanceSensoryShort-Term MemoryStimulusSymptomsTechniquesTestingTimeUnited States National Institutes of HealthVisualVisual CortexVisualizationWorkcognitive functiondistractionexperimental studyinnovationinsightmemory retentionnervous system disorderneuralneural modelneural patterningneuroimagingneuromechanismnovelreceptive fieldretinal stimulationretinotopicstemsuccesstheoriesvisual stimulus
项目摘要
PROJECT SUMMARY
Because most high-level cognition depends on working memory (WM) and its dysfunction causes a host of
cognitive impairments, researchers have spent decades trying to understand the neural mechanisms that
support WM. Recently, using sophisticated computational neuroimaging approaches researchers have
repeatedly decoded the contents of WM from patterns of neural activity in a widely distributed number of brain
areas. The format of the WM representation in early visual cortex, for instance, might have the same “sensory-
like” properties as the visual stimulus. Although sensory-like representations are less likely in higher-order brain
areas, the nature of these alternative representations has yet remained impenetrable. This gap in our knowledge
is a critical problem because a host of psychiatric and neurologic disorders stems from a primary WM
dysfunction. Our long-term goal is to understand the mechanisms by which neural populations across the brain
encode WM representations, and how we might develop strategies to mitigate WM problems that impact the
quality of cognition. Our overall hypothesis is that what one sees and what one stores in WM can be distinct and
that distinction differs across the cortical hierarchy. The central aim of the project is to develop incisive data
analytic approaches that will reveal the nature of what is actually being encoded in the neural population
dynamics underlying WM storage. The rationale for the proposed research is that as we better understand the
neural mechanisms of WM, a strong theoretical framework will emerge within which strategies for understanding
and treating cognitive dysfunction will emerge. We test our central hypothesis by pursuing two specific aims. 1)
We will model the neural population dynamics that code for distinct formats of WM representations. 2) We will
identify when and where neural populations encode WM representations that are abstractions of sensory
features. Strong preliminary data demonstrate the feasibility of proposed work as well as initial support for the
hypotheses. Under Aim 1, using novel dimensionality reduction techniques suggest that neural populations code
for both a representation of the memorized stimulus and a representation of the specific stimulus feature that is
task relevant. Under Aim 2, using novel means to model and visualize WM representations revealed that neural
populations that are traditionally thought to encode visual stimulus features in WM also store abstractions that
can bear little resemblance to the original visual stimulus. Overall, the proposed work will generate the data
needed to unmask the representational format of WM across the cortical hierarchy. The approach is innovative
because it uses direct and unbiased computational approaches to model and visualize the representational
format of WM in ways that have not been applied in neuroimaging. The proposed research is significant because
it will provide key insights into the nature of WM representations in the human brain, in addition to providing new
targets for cognitive remediation in psychiatric, neurologic, and geriatric populations.
项目摘要
因为大多数高级认知取决于工作记忆(WM)及其功能障碍会导致许多人
认知障碍,研究人员花了数十年的时间试图了解神经机制
支持Wm。最近,使用复杂的计算神经影像学方法研究人员
反复从神经活动的模式中反复解码了大脑数量的神经活动模式
区域。例如,早期视觉皮层中WM表示的格式可能具有相同的“感觉”
像“视觉刺激”的属性。尽管在高阶大脑中,类似感觉的表示的可能性较小
这些替代表示的区域,尚未无法穿透。根据我们的差距
是一个关键的问题,因为一系列精神病和神经系统疾病从主要WM逐步
功能障碍。我们的长期目标是了解神经跨大脑的机制
编码WM表示形式,以及我们如何制定策略来减轻影响影响的WM问题
认知质量。我们的总体假设是,WM中的一个人看到的以及一个人可能是不同的,并且
这种差异在整个皮质层次结构上有所不同。该项目的核心目的是开发敏锐的数据
分析方法将揭示神经种群实际上正在编码的内容的性质
WM存储的动力学。拟议研究的理由是,我们更好地了解
WM的神经机制,将出现一个强大的理论框架,以理解理解的策略
并且会出现治疗认知功能障碍。我们通过追求两个具体目标来检验中心假设。 1)
我们将建模为WM表示的不同格式编码的神经种群动态。 2)我们会的
确定神经群体在何时何地编码为感觉的抽象的WM表示
特征。强大的初步数据证明了提议的工作的可行性以及对
假设。在AIM 1下,使用新颖的维度降低技术表明神经种群代码
对于记忆刺激的表示和特定刺激特征的表示
任务相关。在AIM 2下,使用新颖的手段对WM表示建模和可视化表明中性
传统上被认为编码WM中的视觉刺激特征的人群也存储了抽象
与原始视觉刺激几乎没有相似之处。总体而言,拟议的工作将生成数据
需要揭示整个皮质层次结构的WM的代表性格式。这种方法是创新的
因为它使用直接和公正的计算方法来建模和可视化表示
WM的格式未应用于神经影像。拟议的研究很重要,因为
除了提供新的外,它还将为人脑中WM表示的性质提供关键的见解
在精神病,神经系统和老年群体中认知修复的靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CLAYTON E CURTIS其他文献
CLAYTON E CURTIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CLAYTON E CURTIS', 18)}}的其他基金
Deep sampling of cognitive effects in the human visual system
人类视觉系统认知效应的深度采样
- 批准号:
10658424 - 财政年份:2023
- 资助金额:
$ 39.41万 - 项目类别:
Neural synchronization of human frontoparietal cortex
人类额顶皮层的神经同步
- 批准号:
8720874 - 财政年份:2013
- 资助金额:
$ 39.41万 - 项目类别:
Neural synchronization of human frontoparietal cortex
人类额顶皮层的神经同步
- 批准号:
8542898 - 财政年份:2012
- 资助金额:
$ 39.41万 - 项目类别:
Neural synchronization of human frontoparietal cortex
人类额顶皮层的神经同步
- 批准号:
8445860 - 财政年份:2012
- 资助金额:
$ 39.41万 - 项目类别:
Essential Cortical Mechanisms for Working Memory
工作记忆的基本皮质机制
- 批准号:
10676983 - 财政年份:2006
- 资助金额:
$ 39.41万 - 项目类别:
相似国自然基金
指向提议者的共情关怀对第三方惩罚行为的影响:心理、脑与计算机制
- 批准号:32371102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
6PPD醌对近海养殖鱼类集群行为的“肠-脑”轴调控机制研究
- 批准号:42307515
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物基质中真实PM2.5的原位分析及在PM2.5入脑行为研究中的应用
- 批准号:22376202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于脑电信号多域特征和深度学习的驾驶行为识别研究
- 批准号:62366028
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
海马DG脑区PV抑制性中间神经元参与认知灵活性调控的机制及其失调与自闭症样行为的关系
- 批准号:82301727
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Frontocortical representations of amygdala-mediated learning under uncertainty
不确定性下杏仁核介导的学习的额皮质表征
- 批准号:
10825354 - 财政年份:2024
- 资助金额:
$ 39.41万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 39.41万 - 项目类别:
THE ROLE OF MEDIUM SPINY NEURONS IN SLEEP DEPRIVATION-INDUCED COGNITIVE RIGIDITY.
中型棘神经元在睡眠剥夺引起的认知僵化中的作用。
- 批准号:
10656057 - 财政年份:2023
- 资助金额:
$ 39.41万 - 项目类别:
IBIS-iPSC: Organoid modeling of cortical surface area hyperexpansion in autism spectrum disorder
IBIS-iPSC:自闭症谱系障碍皮质表面积过度扩张的类器官建模
- 批准号:
10656866 - 财政年份:2023
- 资助金额:
$ 39.41万 - 项目类别:
Intracranial Investigation of Neural Circuity Underlying Human Mood
人类情绪背后的神经回路的颅内研究
- 批准号:
10660355 - 财政年份:2023
- 资助金额:
$ 39.41万 - 项目类别: