Transport transforms for biomedical data modeling, estimation, and classification

用于生物医学数据建模、估计和分类的传输转换

基本信息

  • 批准号:
    10672626
  • 负责人:
  • 金额:
    $ 35.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

The goal of the project is to develop a new mathematical and computational modeling framework for from biomedical data extracted from biomedical experiments such as voltages, spectra (e.g. mass, magnetic resonance, impedance, optical absorption, …), microscopy or radiology images, gene expression, and many others. Scientists who are looking to understand relationships between different molecular and cellular measurements are often faced with questions involving deciphering differences between different cell or organ measurements. Current approaches (e.g. feature engineering and classification, end-to-end neural networks) are often viewed as “black boxes,” given their lack of connection to any biological mechanistic effects. The approach we propose builds from the “ground up” an entirely new modeling framework build based on recently developed invertible transformation. As such, it allows for any machine learning model to be represented in original data space, allowing for not only increased accuracy in prediction, but also direct visualization and interpretation. As an outcome of the previous funding period, our current approach outperforms other mathematical modeling tools when processing segmented signals and images by a wide margin in terms of accuracy, computational complexity, amount of training data needed, interpretability and robustness to out of distribution samples. In this current phase we seek to generalize the method beyond segmented images and signals to virtually any dataset type. We will explore proof of concept applications in cytometry, pathology, and radiomics.
该项目的目的是开发新的数学和计算 从生物医学提取的生物医学数据的建模框架 诸如电压,光谱之类的实验(例如质量,磁共振,, 阻抗,光学滥用,…),显微镜或放射学图像,基因 表达,还有许多其他。希望了解的科学家 不同分子和细胞测量之间的关系通常是 面对涉及不同单元或不同细胞之间差异的问题 器官测量。当前方法(例如功能工程和 分类,端到端神经网络)通常被视为“黑匣子”, 鉴于他们缺乏与任何生物机械作用的联系。方法 我们提出从“扎根”一个全新的建模框架中提出的构建 基于最近开发的可逆转换的构建。因此,它允许 任何在原始数据空间中表示的机器学习模型,允许 不仅提高了预测准确性,还可以直接可视化和 解释。作为上一个资金期的结果,我们的当前 处理时的表现优于其他数学建模工具 在精度方面,宽阔的信号和图像分段, 计算复杂性,所需的培训数据量,可解释性和 从分配样品中鲁棒性。在当前阶段,我们试图 将方法概括为超出分段图像和信号的方法 数据集类型。我们将探索细胞仪中概念应用的证明, 病理学和放射线学。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural Networks, Hypersurfaces, and the Generalized Radon Transform.
神经网络、超曲面和广义氡变换。
  • DOI:
    10.1109/msp.2020.2978822
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Kolouri,Soheil;Yin,Xuwang;Rohde,GustavoK
  • 通讯作者:
    Rohde,GustavoK
Data-driven Identification of Parametric Governing Equations of Dynamical Systems Using the Signed Cumulative Distribution Transform.
  • DOI:
    10.1016/j.cma.2024.116822
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    A. Rubaiyat;D. H. Thai;J. Nichols;M. Hutchinson;S. Wallen;Christina J. Naify;Nathan Geib;M. Haberman;G. Rohde
  • 通讯作者:
    A. Rubaiyat;D. H. Thai;J. Nichols;M. Hutchinson;S. Wallen;Christina J. Naify;Nathan Geib;M. Haberman;G. Rohde
Predicting Malignancy of Breast Imaging Findings Using Quantitative Analysis of Contrast-Enhanced Mammography (CEM).
  • DOI:
    10.3390/diagnostics13061129
  • 发表时间:
    2023-03-16
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Miller, Matthew M.;Rubaiyat, Abu Hasnat Mohammad;Rohde, Gustavo K.
  • 通讯作者:
    Rohde, Gustavo K.
Real‐time intelligent classification of COVID‐19 and thrombosis via massive image‐based analysis of platelet aggregates
通过基于大规模图像的血小板聚集体分析对 COVID-19 和血栓形成进行实时智能分类
  • DOI:
    10.1002/cyto.a.24721
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhang Chenqi;Herbig Maik;Zhou Yuqi;Nishikawa Masako;Shifat‐E‐Rabbi Mohammad;Kanno Hiroshi;Yang Ruoxi;Ibayashi Yuma;Xiao Ting‐Hui;Rohde Gustavo K.;Sato Masataka;Kodera Satoshi;Daimon Masao;Yatomi Yutaka;Goda Keisuke
  • 通讯作者:
    Goda Keisuke
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gustavo Kunde Rohde其他文献

Gustavo Kunde Rohde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gustavo Kunde Rohde', 18)}}的其他基金

High-Content Imaging & Analysis Core
高内涵成像
  • 批准号:
    10703488
  • 财政年份:
    2022
  • 资助金额:
    $ 35.51万
  • 项目类别:
High-Content Imaging & Analysis Core
高内涵成像
  • 批准号:
    10525286
  • 财政年份:
    2022
  • 资助金额:
    $ 35.51万
  • 项目类别:
Lagrangian computational modeling for biomedical data science
生物医学数据科学的拉格朗日计算模型
  • 批准号:
    10063532
  • 财政年份:
    2019
  • 资助金额:
    $ 35.51万
  • 项目类别:
Lagrangian computational modeling for biomedical data science
生物医学数据科学的拉格朗日计算模型
  • 批准号:
    10307595
  • 财政年份:
    2019
  • 资助金额:
    $ 35.51万
  • 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
  • 批准号:
    8771979
  • 财政年份:
    2014
  • 资助金额:
    $ 35.51万
  • 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
  • 批准号:
    9369881
  • 财政年份:
    2014
  • 资助金额:
    $ 35.51万
  • 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
  • 批准号:
    8883458
  • 财政年份:
    2014
  • 资助金额:
    $ 35.51万
  • 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
  • 批准号:
    8244428
  • 财政年份:
    2010
  • 资助金额:
    $ 35.51万
  • 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
  • 批准号:
    8054738
  • 财政年份:
    2010
  • 资助金额:
    $ 35.51万
  • 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
  • 批准号:
    7899624
  • 财政年份:
    2010
  • 资助金额:
    $ 35.51万
  • 项目类别:

相似国自然基金

mRNA反式调控基因转录的机制及其生物学功能
  • 批准号:
    32330018
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
海洋微生物CRISPR单碱基分辨机制研究
  • 批准号:
    42376184
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
大气生物源有机硝酸酯的合成、定量和其在中国南方城市的成因研究
  • 批准号:
    22306059
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
城市污水厂生物除臭系统生物膜微界面微生物逸散行为及机制
  • 批准号:
    52370026
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
增材制造锌镁合金复合椎间融合器降解调控机制与生物学效应研究
  • 批准号:
    52301302
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 35.51万
  • 项目类别:
The Role of Ethnic Racial Discrimination on the Development of Anxious Hypervigilance in Latina Youth
民族种族歧视对拉丁裔青少年焦虑过度警觉的影响
  • 批准号:
    10752122
  • 财政年份:
    2024
  • 资助金额:
    $ 35.51万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 35.51万
  • 项目类别:
Iron deficits and their relationship with symptoms and cognition in Psychotic Spectrum Disorders
铁缺乏及其与精神病谱系障碍症状和认知的关系
  • 批准号:
    10595270
  • 财政年份:
    2023
  • 资助金额:
    $ 35.51万
  • 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 35.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了