Lagrangian computational modeling for biomedical data science
生物医学数据科学的拉格朗日计算模型
基本信息
- 批准号:10063532
- 负责人:
- 金额:$ 36.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountabilityAddressAlgorithmic AnalysisAreaBiologicalBiological ModelsBiologyBiophysicsBrainCancer DetectionCartilageCell modelCellsClassificationCollaborationsCommunicationCommunitiesComputer ModelsComputer softwareDataData AnalysesData ReportingData ScienceData ScientistData SetDevelopmentDiseaseDrug ScreeningEngineeringFlow CytometryFluorescenceGene ExpressionGenerationsGoalsHeartImageKneeLaboratoriesLearningLettersLibrariesLinkMachine LearningMagnetic ResonanceMagnetic Resonance ImagingMalignant NeoplasmsMass Spectrum AnalysisMathematicsMeasurementMedical ImagingMethodologyModelingMolecularMorphologyOpticsOrganPerformancePlant RootsPopulationPythonsResearchScientistSignal TransductionSystemTechniquesTechnologyTrainingUniversitiesVirginiaVisualizationabsorptionalgorithm developmentartificial neural networkbasebiomedical data sciencebiophysical propertiesbrain morphologycellular imagingclinical applicationclinical practiceconvolutional neural networkcostdata spacedeep learningdeep neural networkeffectiveness testingelectric impedanceexperimental studygraphical user interfacegray matterheart imagingimage reconstructionlearning strategymathematical algorithmmathematical modelmathematical theorymicroscopic imagingmodels and simulationneural networkpatient stratificationpatient subsetspredictive modelingradiological imagingtechnology research and developmenttoolvoltage
项目摘要
The goal of the project is to develop a new mathematical and computational
modeling framework for from biomedical data extracted from biomedical
experiments such as voltages, spectra (e.g. mass, magnetic resonance,
impedance, optical absorption, …), microscopy or radiology images, gene
expression, and many others. Scientists who are looking to understand
relationships between different molecular and cellular measurements are often
faced with questions involving deciphering differences between different cell or
organ measurements. Current approaches (e.g. feature engineering and
classification, end-to-end neural networks) are often viewed as “black boxes,”
given their lack of connection to any biological mechanistic effects. The approach
we propose builds from the “ground up” an entirely new modeling framework
build based on recently developed invertible transformation. As such, it allows for
any machine learning model to be represented in original data space, allowing for
not only increased accuracy in prediction, but also direct visualization and
interpretation. Preliminary data including drug screening, modeling morphological
changes in cancer, cardiac image reconstruction, modeling subcellular
organization, and others are discussed.
该项目的目标是开发一种新的数学和计算方法
从生物医学中提取的生物医学数据的建模框架
实验,例如电压、光谱(例如质量、磁共振、
阻抗、光吸收……)、显微镜或放射图像、基因
表达,以及许多其他寻求理解的科学家。
不同分子和细胞测量之间的关系通常是
面临涉及破译不同细胞之间差异或
当前的方法(例如特征工程和
分类、端到端神经网络)通常被视为“黑匣子”,
鉴于它们与任何生物机械效应缺乏联系。
我们建议从“头开始”构建一个全新的建模框架
基于最近开发的可逆变换构建。
在原始数据空间中表示的任何机器学习模型,允许
不仅提高了预测的准确性,而且还可以直接可视化和
初步数据包括药物筛选、建模形态学。
癌症变化、心脏图像重建、亚细胞建模
组织等方面进行了讨论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gustavo Kunde Rohde其他文献
Gustavo Kunde Rohde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gustavo Kunde Rohde', 18)}}的其他基金
Transport transforms for biomedical data modeling, estimation, and classification
用于生物医学数据建模、估计和分类的传输转换
- 批准号:
10672626 - 财政年份:2019
- 资助金额:
$ 36.02万 - 项目类别:
Lagrangian computational modeling for biomedical data science
生物医学数据科学的拉格朗日计算模型
- 批准号:
10307595 - 财政年份:2019
- 资助金额:
$ 36.02万 - 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
- 批准号:
8771979 - 财政年份:2014
- 资助金额:
$ 36.02万 - 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
- 批准号:
9369881 - 财政年份:2014
- 资助金额:
$ 36.02万 - 项目类别:
Utility of Effusion Cytology and Image Analysis in the Diagnosis of Mesothelioma
积液细胞学和图像分析在间皮瘤诊断中的应用
- 批准号:
8883458 - 财政年份:2014
- 资助金额:
$ 36.02万 - 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
- 批准号:
8244428 - 财政年份:2010
- 资助金额:
$ 36.02万 - 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
- 批准号:
8054738 - 财政年份:2010
- 资助金额:
$ 36.02万 - 项目类别:
Automated High-Throuput Estimation and Modeling of Protein Network Distributions
蛋白质网络分布的自动高通量估计和建模
- 批准号:
7899624 - 财政年份:2010
- 资助金额:
$ 36.02万 - 项目类别:
相似国自然基金
问责制度何以影响地方政府绩效——目标责任制情境下的“问责悖论”研究
- 批准号:71103140
- 批准年份:2011
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Privacy-Aware Federated Learning for Breast Cancer Risk Assessment
用于乳腺癌风险评估的隐私意识联合学习
- 批准号:
10742425 - 财政年份:2023
- 资助金额:
$ 36.02万 - 项目类别:
Smartphone-based application to assist in the screening/diagnosis of FASD
基于智能手机的应用程序协助筛查/诊断 FASD
- 批准号:
10491293 - 财政年份:2021
- 资助金额:
$ 36.02万 - 项目类别:
Smartphone-based application to assist in the screening/diagnosis of FASD
基于智能手机的应用程序协助筛查/诊断 FASD
- 批准号:
10353197 - 财政年份:2021
- 资助金额:
$ 36.02万 - 项目类别: