Real-time spectroscopic photoacoustic/ultrasound (PAUS) scanner withsimultaneous fluence and motion compensation to guide and validateinterventions: system development and preclinical testing.
实时光谱光声/超声 (PAUS) 扫描仪,具有同步注量和运动补偿功能,可指导和验证干预措施:系统开发和临床前测试。
基本信息
- 批准号:10672299
- 负责人:
- 金额:$ 73.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAddressAlgorithmsAnatomyAnimal ModelAnimalsAreaBloodBlood VesselsBlood capillariesCanis familiarisCharacteristicsClinicalClinical TrialsCoagulative necrosisColorCompensationContrast MediaCouplingDetectionDevicesDimensionsEthanolExternal Beam Radiation TherapyFiberFiber OpticsGoalsHumanImageImage EnhancementInjection of therapeutic agentInjectionsInterventionLasersLightMachine LearningMalignant NeoplasmsMalignant neoplasm of thyroidMeasurementMethodsMicrobubblesModalityModelingMolecularMotionMusNeedlesNeoplasm MetastasisNoduleOperative Surgical ProceduresOpticsPapillary thyroid carcinomaPatientsPerformancePersonsPharmaceutical PreparationsPhysiologic pulsePilot ProjectsPositioning AttributePreclinical TestingProceduresPrognosisProtocols documentationPumpRadiofrequency Interstitial AblationRecurrenceRecurrent Malignant NeoplasmReportingResearchScanningSpectrum AnalysisSpeedStructureSystemSystems DevelopmentTestingThyroid GlandTimeTissuesUltrasonographyUniversitiesVariantVisualizationWashingtonWorkabsorptioncancer recurrenceclinical applicationclinical translationdrug distributionefficacy validationexperimental studyflexibilityhigh riskhistological studieshuman subjectimage guidedimaging capabilitiesimaging probeimprovedin vivo Modelindustry partnerlight intensitymolecular decompositionnovel strategiesoptical fiberphotoacoustic imagingreconstructionsignal processingskillssoft tissuespectroscopic imagingsurgical riskthyroid neoplasmtooltumorultrasound
项目摘要
Abstract
The goal of this project is to develop a clinical real-time spectroscopic photoacoustic/ultrasound (PAUS) system
for molecular guidance of interventional procedures through a partnership between UW and GE Research.
Recently, we proposed a new, fast-sweep concept for PA imaging. To put this concept into practice, we first
developed a unique, compact, diode-pumped, tunable (700 -900 nm) laser operating at very high (up to 1000
Hz) repetition rates and relatively low (~ 1 mJ) pulse energies, and a fiber-optic delivery system to sequentially
couple laser pulses into the imaging probe. In addition to US B-mode, and all other US modes, the system
simultaneously produces real-time (50 Hz) spectroscopic PA images, which were combined for the first time
for real-time PAUS imaging. A unique feature is automatic on-line laser-fluence compensation and motion
correction, enabling quantitative optical absorption spectroscopy at every image pixel. Spectroscopy can
identify substances opaque to US based on their molecular constituents (drugs/contrast agents), and quantify
tissue functional changes (e.g., blood oxygenation and its concentration) within the image; in addition,
manipulation with a needle is better visualized with PA.
UW will work with GE Research to integrate spectroscopic PAUS into a high-end US scanner to create a
clinical-grade PAUS system, and test whether it can improve interventional procedure guidance in general and,
particularly, in ethanol (EA) ablation therapies of recurrent thyroid tumors.
The prognosis for most people with thyroid cancer after primary treatment is very good, but the recurrence rate
or persistence can be up to 30%. If recurrent cancer is confirmed, image-guided nonsurgical procedures such
as EA or radio frequency ablation (RFA) are commonly used alternatives to more invasive procedures.
Although US helps position EA and RFA needles, on-line imaging of the ablative area and confirmation of
ablation remain difficult for US. When the recurrent nodule (especially the capillary network in it) is not entirely
treated, the cancer will return with possible metastasis. We hypothesize here that real-time spectroscopic
PAUS will improve the efficacy of ablation procedures and dramatically reduce procedure repetitions. If
successful in this initial stage, the project will move to a clinical trial to both guide and validate ablative therapies
and explore real-time spectroscopic PAUS for other interventional procedures.
SA1 will integrate our unique laser and scanning fiber-optic delivery system with a clinical GE US scanner for
real-time spectroscopic PAUS. Then, SA2 will develop real-time signal processing tools for motion correction
and fluence compensation and imaging protocols for spectroscopic PAUS. SA3 will focus on optimizing the
PAUS system using phantom and ex vivo studies. Finally, in SA4 the developed PAUS system will be used to
test the clinical applicability of PAUS guidance with three in vivo models, including small animal studies of
thyroid cancer, an animal model approximating human anatomy, and pilot measurements on human subjects.
抽象的
该项目的目标是开发临床实时光谱光声/超声(PAUS)系统
通过华盛顿大学和通用电气研究中心之间的合作,对介入手术进行分子指导。
最近,我们提出了一种新的 PA 成像快速扫描概念。为了将这一理念付诸实践,我们首先
开发了一种独特、紧凑、二极管泵浦、可调谐 (700 -900 nm) 激光器,工作温度非常高(高达 1000
Hz)重复率和相对较低(~ 1 mJ)的脉冲能量,以及光纤传输系统
将激光脉冲耦合到成像探头中。除了 US B 模式和所有其他 US 模式外,系统
同时生成实时 (50 Hz) 光谱 PA 图像,这些图像首次合并
用于实时 PAUS 成像。一个独特的功能是自动在线激光注量补偿和运动
校正,实现每个图像像素的定量光学吸收光谱。光谱分析可以
根据其分子成分(药物/造影剂)识别对美国不透明的物质,并量化
图像内的组织功能变化(例如,血液氧合及其浓度);此外,
使用 PA 可以更好地显示用针进行的操作。
华盛顿大学将与 GE Research 合作,将光谱 PAUS 集成到高端美国扫描仪中,以创建
临床级 PAUS 系统,并测试它是否可以总体上改善介入手术指导,
特别是在复发性甲状腺肿瘤的乙醇(EA)消融治疗中。
大多数甲状腺癌患者经过初步治疗后预后非常好,但复发率较高
或持久性可达30%。如果确诊癌症复发,可以进行影像引导的非手术治疗,例如
因为 EA 或射频消融 (RFA) 是更具侵入性手术的常用替代方案。
尽管美国帮助定位 EA 和 RFA 针,但消融区域的在线成像和确认
美国的消融仍然很困难。当复发结节(尤其是其中的毛细血管网络)未完全消失时
经过治疗后,癌症会复发并可能发生转移。我们在这里假设实时光谱
PAUS 将提高消融手术的效率并显着减少手术重复次数。如果
该项目在初始阶段取得成功,将进入临床试验以指导和验证消融疗法
并探索实时光谱 PAUS 用于其他介入手术。
SA1 将我们独特的激光和扫描光纤传输系统与临床 GE US 扫描仪集成在一起,用于
实时光谱 PAUS。然后,SA2将开发用于运动校正的实时信号处理工具
以及光谱 PAUS 的注量补偿和成像方案。 SA3将重点优化
PAUS 系统使用模型和离体研究。最后,在SA4中,开发的PAUS系统将用于
使用三种体内模型测试 PAUS 指导的临床适用性,包括小动物研究
甲状腺癌、接近人体解剖学的动物模型以及对人类受试者的初步测量。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Review of Deep Learning Approaches for Interleaved Photoacoustic and Ultrasound (PAUS) Imaging.
- DOI:10.1109/tuffc.2023.3329119
- 发表时间:2023-12
- 期刊:
- 影响因子:3.6
- 作者:Kim, Minwoo;Pelivanov, Ivan;O'Donnell, Matthew
- 通讯作者:O'Donnell, Matthew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew O'Donnell其他文献
Matthew O'Donnell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew O'Donnell', 18)}}的其他基金
Real-time spectroscopic photoacoustic/ultrasound (PAUS) scanner withsimultaneous fluence and motion compensation to guide and validateinterventions: system development and preclinical testing.
实时光谱光声/超声 (PAUS) 扫描仪,具有同步注量和运动补偿功能,可指导和验证干预措施:系统开发和临床前测试。
- 批准号:
10295522 - 财政年份:2021
- 资助金额:
$ 73.27万 - 项目类别:
Non-invasive trapping and imaging of circulating tumor cells in the peripheral va
外周血管循环肿瘤细胞的无创捕获和成像
- 批准号:
8982230 - 财政年份:2012
- 资助金额:
$ 73.27万 - 项目类别:
Non-invasive trapping and imaging of circulating tumor cells in the peripheral va
外周血管循环肿瘤细胞的无创捕获和成像
- 批准号:
8776296 - 财政年份:2012
- 资助金额:
$ 73.27万 - 项目类别:
Non-invasive trapping and imaging of circulating tumor cells in the peripheral va
外周血管循环肿瘤细胞的无创捕获和成像
- 批准号:
8416574 - 财政年份:2012
- 资助金额:
$ 73.27万 - 项目类别:
Non-invasive trapping and imaging of circulating tumor cells in the peripheral va
外周血管循环肿瘤细胞的无创捕获和成像
- 批准号:
8594249 - 财政年份:2012
- 资助金额:
$ 73.27万 - 项目类别:
Optoacoustic Transduction for High-Frequency Ultrasound
高频超声的光声转换
- 批准号:
6976723 - 财政年份:2005
- 资助金额:
$ 73.27万 - 项目类别:
Ultrasonic Imaging of LIOB in Dendrimer Nanocomposites
树枝状聚合物纳米复合材料中 LIOB 的超声成像
- 批准号:
6867835 - 财政年份:2005
- 资助金额:
$ 73.27万 - 项目类别:
CAN IVUS MANAGE CORONARY ARTERY INTERVENTIONS
IVUS 可以进行冠状动脉干预吗
- 批准号:
6389189 - 财政年份:1996
- 资助金额:
$ 73.27万 - 项目类别:
CATHETER ARRAY FOR MECHANICAL IMAGING OF CORONARY ARTERY
用于冠状动脉机械成像的导管阵列
- 批准号:
2332496 - 财政年份:1996
- 资助金额:
$ 73.27万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 73.27万 - 项目类别:
A multicenter study in bronchoscopy combining Stimulated Raman Histology with Artificial intelligence for rapid lung cancer detection - The ON-SITE study
支气管镜检查结合受激拉曼组织学与人工智能快速检测肺癌的多中心研究 - ON-SITE 研究
- 批准号:
10698382 - 财政年份:2023
- 资助金额:
$ 73.27万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 73.27万 - 项目类别:
Optimizing Treatment Decision Making for Patients with Localized Renal Mass
优化局部肾脏肿块患者的治疗决策
- 批准号:
10734606 - 财政年份:2023
- 资助金额:
$ 73.27万 - 项目类别:
Improved arrhythmia ablation via MR-guided robotic catheterization and multimodal clinician feedback
通过 MR 引导的机器人导管插入术和多模式临床医生反馈改善心律失常消融
- 批准号:
10638497 - 财政年份:2023
- 资助金额:
$ 73.27万 - 项目类别: