Mitochondria Functions Modified by Sulfotransferase 1C2
磺基转移酶 1C2 修饰的线粒体功能
基本信息
- 批准号:10664935
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Acute Renal Failure with Renal Papillary NecrosisAgingAttenuatedBiochemicalCaringCell DeathCellular Metabolic ProcessCholecalciferolCholesterolClinicalComplexConsomic StrainCytoprotectionDataDown-RegulationEnergy SupplyEventExperimental ModelsFDA approvedGene DeliveryGenerationsGenesGeneticGenetic InductionGenetic ModelsGenetic ScreeningGoalsHealth Care CostsHemorrhageHospitalizationHypotensionHypoxiaImpairmentIncidenceInjuryIschemiaIschemic PreconditioningKidneyKidney DiseasesLabelMass Spectrum AnalysisMembraneMembrane FluidityMembrane LipidsMembrane PotentialsMessenger RNAMitochondriaModalityModelingNephrologyNorwayOxygen saturation measurementPathologicPathway interactionsPatientsPhosphorylationPhysiologicalPhysiologyPlasmidsPopulationPredispositionPreventive therapyProcessProductionProteinsProteomicsRat StrainsRattus norvegicusRecommendationRenal functionReperfusion InjuryResistanceRespirationRodentRoleSepsisSeveritiesStructureSyndromeTestingTherapeutic InterventionToxinWaterWorkcholesteryl sulfatecostcurative treatmentsexperimental studyfluorescence lifetime imagingfree radical oxygengenetic resistancegenetic strainhemodynamicsischemic injurylaurdanmitochondrial membranemortalitynovel strategiesnovel therapeuticsoxidationpreventreceptorrespiratorysulfotransferasetargeted treatmenttherapeutic target
项目摘要
Acute kidney injury (AKI) is the most common renal disease requiring hospitalization and is associated with
significant mortality. There remains no reliable treatment modality for acute kidney injury. In the setting of
ischemia or hypoxic injury, early alterations in mitochondrial structure impair cellular energetics, activate cell
death pathways, increase oxygen free radical generation and may influence renal hemodynamics. Different
models of naturally or experimentally induced resistance to ischemic injury may help to identify biochemical,
cellular and physiological events underlying the injury process and provide potential targets for therapeutic
intervention. Our prior work uncovered a unique, unanticipated role for sulfotransferase 1C2 (SULT1C2) in
changing mitochondria physiology to confer protection against ischemic injury. Since we found SULT1C2 is
highly up-regulated in proteomic screens of mitochondria isolated from ischemia-preconditioned kidneys, we
tested whether kidneys transduced with plasmids bearing SULT1C2 are resistant to ischemia preconditioning.
The goal of this proposal is to delineate the extent of the contribution that SULT1C2 makes to altered cell
metabolism resulting in an ischemia preconditioned state. We will test the hypothesis that the mitochondria
adaptation due to ischemia preconditioning is due in part to direct action of sulfotransferase 1C2 on
mitochondria function brought about by changing cholesterol sulfate levels in mitochondria membranes.
In these studies, we will utilize two different models of resistance to AKI; 1) a genetic model of the Brown
Norway rat and Brown Norway derived consomic strains of rats, and 2) a model of experimentally induced
ischemic preconditioning. Studies in specific objective 1 will test the hypothesis that sulfotransferase 1C2
changes mitochondria respirome composition and physiology due to changes in membrane lipid organization.
These experiments will utilize a proteomic approach of label-free-quantitative mass spectroscopy to identify
biochemical similarities in different models of resistance. Specific aim 2 will test the hypothesis that
sulfotransferase 1C2 requires mitochondria receptors to convert cholesterol to cholesterol sulfate. Lastly aim 3
will test the hypothesis that inhibition of sulfotransferase 1C2 or down-regulation of sulfotransferase 1C2
markedly attenuates cellular protection against ischemia reperfusion injury. These studies will investigate post-
ischemic mitochondria respiratory capacity, mitochondrial polarization, renal hemodynamics and renal function
protection. Overall, the proposed studies will help provide an understanding of cytoprotective strategies and
identify potential therapeutic targets to manage the severity of AKI.
急性肾损伤(AKI)是最常见的需要住院治疗的肾脏疾病,与
显着的死亡率。急性肾损伤尚无可靠的治疗方法。在设置中
缺血或缺氧损伤,线粒体结构的早期改变损害细胞能量,激活细胞
死亡途径,增加氧自由基的产生,并可能影响肾脏血流动力学。不同的
自然或实验诱导的缺血性损伤抵抗模型可能有助于识别生化、
损伤过程中的细胞和生理事件并为治疗提供潜在靶点
干涉。我们之前的工作揭示了磺基转移酶 1C2 (SULT1C2) 在
改变线粒体生理学以提供针对缺血性损伤的保护。因为我们发现 SULT1C2 是
在从缺血预处理的肾脏分离的线粒体的蛋白质组学筛选中高度上调,我们
测试了用带有 SULT1C2 的质粒转导的肾脏是否对缺血预处理具有抵抗力。
该提案的目标是描述 SULT1C2 对细胞改变的贡献程度
新陈代谢导致缺血预适应状态。我们将检验线粒体的假设
缺血预适应引起的适应部分是由于磺基转移酶 1C2 的直接作用
线粒体功能是通过改变线粒体膜中胆固醇硫酸盐水平而实现的。
在这些研究中,我们将利用两种不同的 AKI 抵抗模型; 1) 布朗的遗传模型
挪威大鼠和挪威棕色大鼠衍生的康体品系,以及2)实验诱导的模型
缺血预处理。具体目标 1 的研究将检验磺基转移酶 1C2 的假设
由于膜脂组织的变化,线粒体呼吸组的组成和生理机能发生变化。
这些实验将利用无标记定量质谱的蛋白质组学方法来识别
不同耐药模型的生化相似性。具体目标 2 将检验以下假设:
磺基转移酶 1C2 需要线粒体受体将胆固醇转化为硫酸胆固醇。最后目标3
将检验磺基转移酶 1C2 抑制或磺基转移酶 1C2 下调的假设
显着减弱细胞对缺血再灌注损伤的保护作用。这些研究将调查事后
缺血线粒体呼吸能力、线粒体极化、肾血流动力学和肾功能
保护。总体而言,拟议的研究将有助于了解细胞保护策略和
确定潜在的治疗靶点来控制 AKI 的严重程度。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proteomic analysis of murine kidney proximal tubule sub-segment derived cell lines reveals preferences in mitochondrial pathway activity.
对小鼠肾近端小管亚段衍生细胞系的蛋白质组学分析揭示了线粒体途径活性的偏好。
- DOI:10.1016/j.jprot.2023.104998
- 发表时间:2023
- 期刊:
- 影响因子:3.3
- 作者:Ferreira,RicardoMelo;deAlmeida,Rita;Culp,Clayton;Witzmann,Frank;Wang,Mu;Kher,Rajesh;Nagami,GlennT;Mohallem,Rodrigo;Andolino,ChaylenJade;Aryal,UmaK;Eadon,MichaelT;Bacallao,RobertL
- 通讯作者:Bacallao,RobertL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT L BACALLAO其他文献
ROBERT L BACALLAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT L BACALLAO', 18)}}的其他基金
Mitochondria Functions Modified by Sulfotransferase 1C2
磺基转移酶 1C2 修饰的线粒体功能
- 批准号:
10230976 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Mitochondria Functions Modified by Sulfotransferase 1C2
磺基转移酶 1C2 修饰的线粒体功能
- 批准号:
10016916 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Endogenous Mitochondria Resistance to Acute Kidney Injury
内源性线粒体对急性肾损伤的抵抗力
- 批准号:
8971622 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Reducing Nephrotoxicity while enabling read through of missense stop codons by Gentamicin congeners
降低肾毒性,同时能够通过庆大霉素同系物读取错义终止密码子
- 批准号:
9898260 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Polycystic Kidney Disease: Basic, Translational, and Clinical Science
多囊肾病:基础科学、转化科学和临床科学
- 批准号:
7541112 - 财政年份:2008
- 资助金额:
-- - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单细胞多组学解析脐带间充质干细胞优势功能亚群重塑巨噬细胞极化治疗皮肤光老化的作用与机制
- 批准号:82302829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitochondria Functions Modified by Sulfotransferase 1C2
磺基转移酶 1C2 修饰的线粒体功能
- 批准号:
10230976 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Lysophosphatidic acid (LPA) is a novel FGF23 regulator in acute kidney injury.
溶血磷脂酸 (LPA) 是急性肾损伤中的一种新型 FGF23 调节剂。
- 批准号:
10542347 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Lysophosphatidic acid (LPA) is a novel FGF23 regulator in acute kidney injury.
溶血磷脂酸 (LPA) 是急性肾损伤中的一种新型 FGF23 调节剂。
- 批准号:
10320973 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Muscle-Kidney Crosstalk in Age-related Kidney Disease
年龄相关性肾脏疾病中的肌肉-肾脏串扰
- 批准号:
10244886 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Mitochondria Functions Modified by Sulfotransferase 1C2
磺基转移酶 1C2 修饰的线粒体功能
- 批准号:
10016916 - 财政年份:2020
- 资助金额:
-- - 项目类别: