An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone

用于研究前列腺癌转移至血管化骨的器官芯片模型系统

基本信息

项目摘要

PROJECT SUMMARY Based on “seed and soil” theory, certain tumors exhibit a predilection for metastasis to particular organs. For example, bone is the most common site of metastasis for prostate cancer, happening in ~90% of patients with advanced stages of prostate cancer. Organ-on-a-chip models of cancer metastasis have emerged as a powerful predictor of cancer progression. However, despite the development in organ-on-a-chip platforms for in-vitro studies in metastasis, research in bone metastasis on-a-chip remains largely underdeveloped, and the only few available models in the literature lack the complex mineralization and the inclusion of bone cells, especially osteoclasts into the system, which are essential elements in order to study bone remodeling. Here, (aim 1) we will use a novel organ-on-a-chip platform with a highly mineralized and calcified cell-laden hydrogel including osteoclasts to determine the influence of mineralization and the cross-talk of prostate cancer cells and bone cells on the process of preferential prostate cancer growth in bone and the consequent bone resorption. A potentially rate-limiting step in metastasis formation is the extravasation process that involves adhesion of tumor cells to endothelial cells and their transmigration through the endothelial cell monolayer and basement membrane. It has been well-established that pericyte-support of EC capillaries is required for formation of non-leaky vessels and perturbation of the EC-hMSC linkage, therefore results in leaky vessels. The role of pericytes in tumor metastasis has been mostly focused on tumor angiogenesis and the research on the role of this cell type on cancer extravasation has remained underdeveloped. Here, (aim 2) we will use the bone metastasis-on-a-chip platform to test the role of pericytes in a vasculature embedded in a mineralized bone matrix in inhibiting human prostate cancer extravasation as well as the effects of factors released by cancer cells on vasculature integrity. We argue that this multi-pronged strategy will enable the engineering of in-vitro bone metastasis-on-a-chip model system to understand the preferential metastasis of prostate cancer to the bone and bone destruction as well as the role of pericytes in prostate cancer extravasation through the vasculature. Ultimately, this project will lead to model systems that can be used for studying cancer metastasis to bone and developing new treatments.
项目概要 根据“种子和土壤”理论,某些肿瘤表现出向特定器官转移的倾向。 例如,骨是前列腺癌最常见的转移部位,约 90% 的前列腺癌患者发生骨转移 前列腺癌晚期的癌症转移器官芯片模型已成为一种强大的方法。 然而,尽管体外器官芯片平台得到了发展。 转移方面的研究,芯片上骨转移的研究在很大程度上仍然不发达,而且仅有的少数 文献中可用的模型缺乏复杂的矿化和骨细胞的包含,特别是 破骨细胞进入系统,这是研究骨重塑的基本要素,(目标 1)我们。 将使用一种新型的芯片器官平台,该平台具有高度矿化和钙化的充满细胞的水凝胶,包括 破骨细胞以确定矿化的影响以及前列腺癌细胞和骨细胞的串扰 前列腺癌在骨中优先生长的过程以及随后的骨吸收。 转移形成的限速步骤是外渗过​​程,涉及肿瘤细胞粘附到 内皮细胞及其通过内皮细胞单层和基底膜的迁移。 已经确定 EC 毛细血管的周细胞支持是形成无渗漏血管所必需的 EC-hMSC 连接的扰动,因此导致血管渗漏。周细胞在肿瘤转移中的作用。 主要关注肿瘤血管生成以及这种细胞类型对癌症的作用的研究 在这里,(目标 2)我们将使用骨转移芯片平台。 测试嵌入矿化骨基质的脉管系统中周细胞在抑制人类前列腺中的作用 我们认为癌症外渗以及癌细胞释放的因子对脉管系统完整性的影响。 这种多管齐下的策略将使体外骨转移芯片模型系统的设计成为可能 了解前列腺癌向骨的优先转移及骨破坏的作用 最终,该项目将建立模型。 可用于研究癌症骨转移和开发新疗法的系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luiz Eduardo Bertassoni其他文献

Luiz Eduardo Bertassoni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luiz Eduardo Bertassoni', 18)}}的其他基金

Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
  • 批准号:
    10614543
  • 财政年份:
    2021
  • 资助金额:
    $ 17.64万
  • 项目类别:
An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone
研究前列腺癌转移至血管化骨的器官芯片模型系统
  • 批准号:
    10373347
  • 财政年份:
    2021
  • 资助金额:
    $ 17.64万
  • 项目类别:
Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
  • 批准号:
    10449968
  • 财政年份:
    2021
  • 资助金额:
    $ 17.64万
  • 项目类别:
Microengineering the Dental Pulp Vascular Microenvironment
牙髓血管微环境的微工程
  • 批准号:
    9158576
  • 财政年份:
    2016
  • 资助金额:
    $ 17.64万
  • 项目类别:
Microengineering the Dental Pulp Vascular Microenvironment
牙髓血管微环境的微工程
  • 批准号:
    9981727
  • 财政年份:
    2016
  • 资助金额:
    $ 17.64万
  • 项目类别:

相似国自然基金

动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
  • 批准号:
    82000254
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
  • 批准号:
    31902264
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    300 万元
  • 项目类别:
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
  • 批准号:
    81804098
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
  • 批准号:
    81871787
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
  • 批准号:
    10752141
  • 财政年份:
    2023
  • 资助金额:
    $ 17.64万
  • 项目类别:
2023 Elastin, Elastic Fibers and Microfibrils Gordon Research Conference and Gordon Research Seminar
2023年弹性蛋白、弹性纤维和微纤维戈登研究会议和戈登研究研讨会
  • 批准号:
    10754079
  • 财政年份:
    2023
  • 资助金额:
    $ 17.64万
  • 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
  • 批准号:
    10736860
  • 财政年份:
    2023
  • 资助金额:
    $ 17.64万
  • 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
  • 批准号:
    10677182
  • 财政年份:
    2023
  • 资助金额:
    $ 17.64万
  • 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
  • 批准号:
    10664118
  • 财政年份:
    2023
  • 资助金额:
    $ 17.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了