Microengineering the Dental Pulp Vascular Microenvironment
牙髓血管微环境的微工程
基本信息
- 批准号:9981727
- 负责人:
- 金额:$ 50.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectAngiogenic FactorArchitectureBiocompatible MaterialsBiologicalBlood VesselsBlood capillariesCell Differentiation processCellsCoculture TechniquesCommunicable DiseasesCuesDental MaterialsDental PulpDental cariesDentinDentistryDevelopmentDiffuseEndodonticsEndothelial CellsEndotheliumEngineeringEnvironmentEvaluationExcisionExtracellular MatrixGelatinGoalsHeartHumanHydrogelsImplantIn VitroIndividualInjectableLengthLightMediatingMethacrylatesMicrofluidicsMusNatural regenerationNecrosisNutrientOdontoblastsPepsin APhenotypePlant RootsPolymersProcessPropertyPulp CanalsRoleRoot Canal TherapySideSignaling MoleculeSiteSkinSourceSwellingTechniquesTestingTissue EngineeringTissue ModelTissue SurvivalTissuesTooth ApexTooth structureVascular blood supplyVascularizationWaste Productsbasebiomaterial compatibilitybioprintingblood vessel developmentcell motilitycrosslinkdental structureimprovedin vivomechanical propertiesmonolayernovelparacrinepermanent toothphysical propertyregenerativeresponsescaffoldstem cellssuccesstissue regenerationtranslational approachvasculogenesisvirtual
项目摘要
Project Summary:
Dental caries is an infectious disease affecting approximately 90% of adults worldwide. Late stages of caries
affect the dental pulp, leading to tissue necrosis and ultimately requiring root canal therapy. Typically, root
canals in permanent teeth are treated by removing the necrotic tissue and replacing it with an artificial material.
Regenerative endodontics has been proposed as an improved treatment option for these conditions. However,
without controllable strategies to engineer the pulp vasculature, effective pulp regeneration is virtually
impossible. It has been recently demonstrated that a functional vasculature can be engineered by culturing
endothelial cells and stem cells from various sources in the correct microenvironmental conditions. However,
the precise requirements specific to regenerating the pulp vasculature remain poorly understood. This project
will systematically investigate three overlapping aspects that we propose are key determinants to regenerate
the pulp vasculature: (1) matrix physical and mechanical properties, (2) composition, and (3) microarchitecture.
In aim 1 we will investigate the contributions of different physical and mechanical properties to the ability of
human endothelial colony forming cells (ECFCs) and dental pulp stem cells (DPSCs) to form microvascular
networks when embedded in hydrogels that can be photo-crosslinked to have their properties systematically
adjusted. We will then engineer pulp tissue-constructs that are pre-vascularized with pre-fabricated endothelial
microchannels to enhance pulp regeneration in full-length root canals in-vivo. In aim 2 we will develop
injectable and photo-curable hydrogels synthesized from the natural matrix of dentin and modified with
methacrylates to test the contribution of matrix composition to the regeneration of the pulp vasculature.
Further, we will combine these hydrogels with angiogenic components extracted from the dentin matrix and
test their regenerative potential in vitro and in vivo. In aim 3 we will fabricate architecturally controlled gradients
of ECFC and DPSC paracrine factors using microfluidics techniques to test the contribution of tissue
microarchitecture to the formation of the pulp vasculature. We will then mimic the microarchitectures of
vascularized dental pulp by 3D bioprinting tissue constructs that reproduce the organization of the native pulp.
In the end of this project we expect to have microengineered a 3D vascularized pulp microenvironment that will
improve translational approaches for use in regenerative endodontics in adult teeth.
项目概要:
龋齿是一种传染病,影响全世界约 90% 的成年人。龋齿晚期
影响牙髓,导致组织坏死,最终需要根管治疗。通常,根
恒牙根管的治疗方法是去除坏死组织并用人造材料替换。
再生牙髓学已被提议作为这些病症的改进治疗选择。然而,
如果没有可控的策略来设计牙髓脉管系统,有效的牙髓再生实际上是不可能的
不可能的。最近已经证明,功能性脉管系统可以通过培养来设计
不同来源的内皮细胞和干细胞处于正确的微环境条件下。然而,
对于牙髓脉管系统再生的具体要求仍然知之甚少。这个项目
将系统地调查我们提出的三个重叠方面,它们是再生的关键决定因素
牙髓脉管系统:(1) 基质物理和机械特性,(2) 成分,(3) 微结构。
在目标 1 中,我们将研究不同物理和机械特性对能力的贡献
人内皮集落形成细胞(ECFC)和牙髓干细胞(DPSC)形成微血管
嵌入水凝胶中的网络可以通过光交联系统地获得其特性
调整。然后,我们将设计用预制内皮细胞预血管化的牙髓组织结构
微通道可增强体内全长根管的牙髓再生。在目标 2 中,我们将开发
由牙本质天然基质合成的可注射和光固化水凝胶,并用
甲基丙烯酸酯来测试基质组合物对牙髓脉管系统再生的贡献。
此外,我们将这些水凝胶与从牙本质基质中提取的血管生成成分结合起来,
测试它们的体外和体内再生潜力。在目标 3 中,我们将制造架构控制的梯度
使用微流体技术检测 ECFC 和 DPSC 旁分泌因子以测试组织的贡献
微结构影响牙髓脉管系统的形成。然后我们将模仿微架构
通过 3D 生物打印组织结构来复制天然牙髓的组织,从而形成血管化牙髓。
在这个项目结束时,我们期望通过微工程设计出一个 3D 血管化牙髓微环境,该环境将
改进用于恒牙再生牙髓治疗的转化方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luiz Eduardo Bertassoni其他文献
Luiz Eduardo Bertassoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luiz Eduardo Bertassoni', 18)}}的其他基金
Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
- 批准号:
10614543 - 财政年份:2021
- 资助金额:
$ 50.31万 - 项目类别:
An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone
用于研究前列腺癌转移至血管化骨的器官芯片模型系统
- 批准号:
10545054 - 财政年份:2021
- 资助金额:
$ 50.31万 - 项目类别:
An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone
研究前列腺癌转移至血管化骨的器官芯片模型系统
- 批准号:
10373347 - 财政年份:2021
- 资助金额:
$ 50.31万 - 项目类别:
Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
- 批准号:
10449968 - 财政年份:2021
- 资助金额:
$ 50.31万 - 项目类别:
Microengineering the Dental Pulp Vascular Microenvironment
牙髓血管微环境的微工程
- 批准号:
9158576 - 财政年份:2016
- 资助金额:
$ 50.31万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 50.31万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 50.31万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 50.31万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 50.31万 - 项目类别: