Microengineering the Dental Pulp Vascular Microenvironment

牙髓血管微环境的微工程

基本信息

项目摘要

Project Summary: Dental caries is an infectious disease affecting approximately 90% of adults worldwide. Late stages of caries affect the dental pulp, leading to tissue necrosis and ultimately requiring root canal therapy. Typically, root canals in permanent teeth are treated by removing the necrotic tissue and replacing it with an artificial material. Regenerative endodontics has been proposed as an improved treatment option for these conditions. However, without controllable strategies to engineer the pulp vasculature, effective pulp regeneration is virtually impossible. It has been recently demonstrated that a functional vasculature can be engineered by culturing endothelial cells and stem cells from various sources in the correct microenvironmental conditions. However, the precise requirements specific to regenerating the pulp vasculature remain poorly understood. This project will systematically investigate three overlapping aspects that we propose are key determinants to regenerate the pulp vasculature: (1) matrix physical and mechanical properties, (2) composition, and (3) microarchitecture. In aim 1 we will investigate the contributions of different physical and mechanical properties to the ability of human endothelial colony forming cells (ECFCs) and dental pulp stem cells (DPSCs) to form microvascular networks when embedded in hydrogels that can be photo-crosslinked to have their properties systematically adjusted. We will then engineer pulp tissue-constructs that are pre-vascularized with pre-fabricated endothelial microchannels to enhance pulp regeneration in full-length root canals in-vivo. In aim 2 we will develop injectable and photo-curable hydrogels synthesized from the natural matrix of dentin and modified with methacrylates to test the contribution of matrix composition to the regeneration of the pulp vasculature. Further, we will combine these hydrogels with angiogenic components extracted from the dentin matrix and test their regenerative potential in vitro and in vivo. In aim 3 we will fabricate architecturally controlled gradients of ECFC and DPSC paracrine factors using microfluidics techniques to test the contribution of tissue microarchitecture to the formation of the pulp vasculature. We will then mimic the microarchitectures of vascularized dental pulp by 3D bioprinting tissue constructs that reproduce the organization of the native pulp. In the end of this project we expect to have microengineered a 3D vascularized pulp microenvironment that will improve translational approaches for use in regenerative endodontics in adult teeth.
项目摘要: 龋齿是一种传染病,影响了全球约90%的成年人。龋的晚期 影响牙髓,导致组织坏死,最终需要根管治疗。通常,根 通过去除坏死组织并用人造物质代替永久性牙齿中的运河。 已提出再生性牙髓牙齿牙齿牙齿牙齿牙齿药作为改进的治疗选择。然而, 如果没有可控策略来设计纸浆脉管系统,有效的纸浆再生实际上是 不可能的。最近已经证明,可以通过培养来设计功能性脉管系统 在正确的微环境条件下,来自各种来源的内皮细胞和干细胞。然而, 再生果肉脉管系统的特定确切要求仍然鲜为人知。这个项目 我们建议我们提出的三个重叠方面是重生的关键决定因素 果肉脉管系统:(1)基质物理和机械性能,(2)组成和(3)微体系结构。 在AIM 1中,我们将研究不同的物理和机械性能对能力的贡献 人内皮菌落形成细胞(ECFC)和牙髓干细胞(DPSC)以形成微血管 网络嵌入在水凝胶中,可以将照片交联以系统地具有其性能 调整。然后,我们将使用预先制作的内皮质体进行果肉组织结构 微通道可增强全长根管中的纸浆再生。在AIM 2中,我们将发展 可从牙本质的天然基质合成的可注射和光疗水凝胶,并用 甲基丙烯酸酯会测试基质组成对果肉脉管系统再生的贡献。 此外,我们将将这些水凝胶与从牙本质基质中提取的血管生成成分相结合, 测试其在体外和体内的再生潜力。在AIM 3中,我们将制造结构控制的梯度 使用微流体技术来测试组织的贡献的ECFC和DPSC旁分泌因子 微体系结构,形成纸浆脉管系统。然后,我们将模仿 通过3D生物打印组织结构的血管化牙髓,可再现天然纸浆的组织。 在该项目的最后 改善成人牙齿再生牙髓牙齿牙齿牙齿牙齿牙齿牙齿牙齿牙齿的翻译方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luiz Eduardo Bertassoni其他文献

Luiz Eduardo Bertassoni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luiz Eduardo Bertassoni', 18)}}的其他基金

Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
  • 批准号:
    10614543
  • 财政年份:
    2021
  • 资助金额:
    $ 50.31万
  • 项目类别:
An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone
用于研究前列腺癌转移至血管化骨的器官芯片模型系统
  • 批准号:
    10545054
  • 财政年份:
    2021
  • 资助金额:
    $ 50.31万
  • 项目类别:
An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone
研究前列腺癌转移至血管化骨的器官芯片模型系统
  • 批准号:
    10373347
  • 财政年份:
    2021
  • 资助金额:
    $ 50.31万
  • 项目类别:
Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
  • 批准号:
    10449968
  • 财政年份:
    2021
  • 资助金额:
    $ 50.31万
  • 项目类别:
Microengineering the Dental Pulp Vascular Microenvironment
牙髓血管微环境的微工程
  • 批准号:
    9158576
  • 财政年份:
    2016
  • 资助金额:
    $ 50.31万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
  • 财政年份:
    2024
  • 资助金额:
    $ 50.31万
  • 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 50.31万
  • 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
  • 批准号:
    10639147
  • 财政年份:
    2023
  • 资助金额:
    $ 50.31万
  • 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 50.31万
  • 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
  • 批准号:
    10677169
  • 财政年份:
    2023
  • 资助金额:
    $ 50.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了