Identifying Cancer Recurrence with Novel Data Linkages with a Cancer Registry
通过与癌症登记处的新数据关联来识别癌症复发
基本信息
- 批准号:10522203
- 负责人:
- 金额:$ 67.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAccreditationAlgorithmsAmbulatory Surgical ProceduresAmerican College of SurgeonsBackBiochemicalBreastCancer PatientCancer SurvivorCaringCause of DeathCharacteristicsClinical TrialsCodeCollectionComputerized Medical RecordCustomDataData CollectionData LinkagesData SourcesDatabasesDeath CertificatesDenmarkDiagnosisDisease-Free SurvivalEthnic OriginEvaluationEventFrightGenerationsGoldHealthHealth Maintenance OrganizationsHealth care facilityHispanic PopulationsHospitalsIncidenceIndividualInpatientsLinkMalignant NeoplasmsMalignant neoplasm of prostateMedical RecordsMedicareMedicare claimMethodsNational Cancer InstituteNational Cancer ProgramPathology ReportPatientsPerformancePopulationPopulation DatabasePopulation StudyPositioning AttributePredictive ValueProceduresProstateProtocols documentationRaceRecurrenceRegistriesReportingResearchResearch PersonnelRiskRuralRural PopulationSEER ProgramSourceStressStructureTrainingTreatment EffectivenessTreatment EfficacyUtahValidationWomanWorkbasebreast cancer registrycancer recurrencecancer sitecancer typeclinical practicecostdata registrydata streamsethnic diversityhealth recordimprovedlearning algorithmmalignant breast neoplasmmenmultiple data sourcesneoplasm registrynovelpatient registrypopulation basedprediction algorithmprimary endpointpublic databaseracial diversitysoundsurvivorship
项目摘要
ABSTRACT
For the estimated 17 million cancer survivors in the US today, fear of recurrence is a substantial source of
stress and an issue that drives survivorship care. Understanding the scope of recurrence among cancer
survivors can inform clinical practice, improve patient health, and allow for real-world assessment of treatment
effectiveness. Population-level data on cancer recurrence are difficult to capture, and require evaluation of
multiple data sources to accurately identify cancer recurrences. The Utah Cancer Registry (UCR), a SEER
registry since 1973, is strongly positioned to identify recurrences in a population-based setting. The registry
data are linked to the Utah Population Database (UPDB), which includes electronic medical records (EMR),
statewide healthcare facility data (SHFD; inpatient, ambulatory surgery and emergency department), and
claims data (All Payer Claims Database (APCD), Medicare). We propose to assess the utility of using data
sources common across all state cancer registries and to investigate the added value of novel data linkages
available at the Utah Cancer Registry. We also propose to extend and validate a recently-developed algorithm
to identify individual level breast cancer recurrence to identify recurrence for other cancer types to estimate the
population-level burden of recurrence. Our specific aims are as follows: 1) Determine the predictive
performance to identify recurrence using data currently available to cancer registries for breast and
prostate cancer. These would include Commission on Cancer recurrence variables, electronic pathology
reports, and death certificates. 2) Estimate the improvements in predictive performance to identify
recurrence by inclusion of novel administrative data linkage for breast and prostate cancer. 3) Evaluate
the scalability and transportability of recurrence identifying algorithms across settings and
populations for research. We will validate the algorithms’ predictive performance by estimating positive and
negative predictive values among a racially and ethnically diverse collection of cancer cases from the Seattle-
Puget Sound SEER registry, including comparisons of performance across race/ethnicity, age, stage, and
rural/urban status. In addition, we will validate the breast recurrence identification algorithm recently developed
in the Seattle registry in the Utah breast cancer population. No algorithms currently exist to evaluate the data
sources individually and combined to identify recurrence events based on cancer registry and administrative
data. Our results will inform the predictive performance for routinely available data and the value added of
administrative data sources, which may be differentially complete and/or costly to procure. Our work will
establish a path forward for population-level tracking of cancer recurrence and facilitate prioritization of data
generation efforts and algorithms that can be customized based on the data available in different situations.
1
抽象的
对于当今美国估计的1700万癌症存活,对复发的恐惧是一个重要的来源
压力和驱动生存护理的问题。了解癌症复发的范围
幸存者可以为临床实践提供信息,改善患者健康并允许对治疗的现实评估
效力。关于癌症复发的人口级数据很难捕获,需要评估
多个数据源可准确识别癌症的回报。犹他州癌症注册表(UCR),先知
自1973年以来的注册表处于强烈的位置,可以在基于人群的环境中确定回报。注册表
数据链接到犹他州人口数据库(UPDB),其中包括电子病历(EMR),
全州医疗机构数据(SHFD;住院,门诊手术和急诊科),以及
索赔数据(所有付款人索赔数据库(APCD),Medicare)。我们建议评估使用数据的实用性
所有州癌症注册表中常见的来源,并研究新型数据链接的附加值
可在犹他州癌症登记处获得。我们还建议扩展和验证最近开发的算法
确定个体水平的乳腺癌复发,以识别其他癌症类型的复发,以估计
人口级复发的伯恩。我们的具体目的如下:1)确定预测性
使用当前可用于乳腺癌和乳腺癌注册表的数据识别复发的性能
前列腺癌。这些将包括癌症复发变量,电子病理学的佣金
报告和死亡证明。 2)估计预测性能的改进以识别
通过纳入乳腺癌和前列腺癌的新型行政数据联系来复发。 3)评估
复发性的可伸缩性和可运输性识别跨环境和
研究人群。我们将通过估计阳性和
来自西雅图的大致和种族多样性收集的癌症病例中的负预测值
Puget Sound Seer注册表,包括在种族/种族,年龄,舞台和
粗糙/城市状况。此外,我们将验证最近开发的乳房复发识别算法
在犹他州乳腺癌的西雅图注册中心。目前没有算法来评估数据
单独并合并来确定基于癌症注册表和行政的复发事件
数据。我们的结果将为常规可用数据的预测性能提供信息,以及
行政数据源,这些数据源可能是差异化的和/或昂贵的。我们的工作将
为癌症复发和数据紧急优先级的人群水平跟踪建立前进的道路
可以根据不同情况下可用的数据自定义的生成工作和算法。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIA HASHIBE其他文献
MIA HASHIBE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIA HASHIBE', 18)}}的其他基金
Identifying Cancer Recurrence with Novel Data Linkages with a Cancer Registry
通过与癌症登记处的新数据关联来识别癌症复发
- 批准号:
10673736 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Utah Advanced Course on Mentorship and Leadership on Cancer-Related Health Disparities
犹他州癌症相关健康差异的指导和领导高级课程
- 批准号:
10368933 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Long-Term Adverse Outcomes Among Rural Cancer Survivors in a Population-Based Cohort
基于人群的农村癌症幸存者的长期不良后果
- 批准号:
10437842 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Utah Advanced Course on Mentorship and Leadership on Cancer-Related Health Disparities
犹他州癌症相关健康差异的指导和领导高级课程
- 批准号:
9905159 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Long-Term Adverse Outcomes Among Rural Cancer Survivors in a Population-Based Cohort
基于人群的农村癌症幸存者的长期不良后果
- 批准号:
10218125 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Long-Term Adverse Outcomes Among Rural Cancer Survivors in a Population-Based Cohort
基于人群的农村癌症幸存者的长期不良后果
- 批准号:
10653702 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Utah Advanced Course on Cancer-related Health Disparities Research, Mentoring, & Leadership
犹他州癌症相关健康差异研究高级课程、指导、
- 批准号:
10555969 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别:
Improving Our Understanding of Late Oral Health Effects in Head and Neck Cancer Survivors
提高我们对头颈癌幸存者晚期口腔健康影响的了解
- 批准号:
9768426 - 财政年份:2018
- 资助金额:
$ 67.95万 - 项目类别:
Population-based Cohort of Endometrial Cancer Survivors in Utah
犹他州基于人群的子宫内膜癌幸存者队列
- 批准号:
8814097 - 财政年份:2015
- 资助金额:
$ 67.95万 - 项目类别:
相似国自然基金
新型分组密码及相关认证加密算法的分析
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
典型Sponge类认证加密算法的代数攻击方法研究
- 批准号:62202017
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
加固的口令认证算法研究
- 批准号:62272091
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
基于国密标准算法的区块链安全认证技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型分组密码及相关认证加密算法的分析
- 批准号:62272282
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
相似海外基金
Identifying Cancer Recurrence with Novel Data Linkages with a Cancer Registry
通过与癌症登记处的新数据关联来识别癌症复发
- 批准号:
10673736 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Project 3: Suicide Risk Identification in Jails using Data Linkage and Automation
项目 3:使用数据链接和自动化识别监狱中的自杀风险
- 批准号:
10441875 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Project 3: Suicide Risk Identification in Jails using Data Linkage and Automation
项目 3:使用数据链接和自动化识别监狱中的自杀风险
- 批准号:
10688258 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Adaptive olfactory threshold testing in the clinical assessment of anosmia
自适应嗅觉阈值测试在嗅觉丧失临床评估中的应用
- 批准号:
10491037 - 财政年份:2022
- 资助金额:
$ 67.95万 - 项目类别:
Sepsis phenotypes at risk for infections caused by multidrug resistant Gram-negative bacilli: elucidating the impact of sepsis definition and patient case mix on prediction performance
脓毒症表型面临由多重耐药革兰氏阴性杆菌引起的感染风险:阐明脓毒症定义和患者病例组合对预测性能的影响
- 批准号:
10412800 - 财政年份:2020
- 资助金额:
$ 67.95万 - 项目类别: