Project 3: Suicide Risk Identification in Jails using Data Linkage and Automation

项目 3:使用数据链接和自动化识别监狱中的自杀风险

基本信息

  • 批准号:
    10688258
  • 负责人:
  • 金额:
    $ 25.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-22 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

Abstract Project #3 Although professional and accreditation standards exist to guide identification of suicide risk, few jails effectively screen for such risk at booking (Intercept 2). Given that individuals booking into jails may be less forthcoming in reporting thoughts and behaviors to correctional officers, current identification practices are insufficient. It may be possible to enhance identification methods in jails, replicating a method developed in community health systems. Using a general population sample from seven health systems, the Mental Health Research Network developed a suicide risk model to predict suicide attempts/deaths using electronic health records and insurance claims data. Claims records were used to create the model that resulted in a risk score that could be available for medical personnel, alerting them to the possibility of heightened suicide risk. Replicating this validation, using a jail population with integrated Medicaid claims data, could result in a similar identification process for justice- involved individuals available at jail intake (booking) that could assist in detecting who among those entering jail could be at risk for suicide attempts and suicide deaths. Risk identified through the model will be compared to the practice-as-usual identification within the jail. Because there is no standardized process for identification of suicide risk within jails, each jail’s screening process will be assessed separately. This proposal would leverage three geographically and demographically diverse jails in one state, increasing the generalizability of the findings. Aim 1. Validate the suicide risk model with a jail population sample (three jails; on all of those who enter during a specific length of time), using Medicaid claims and vital record data. Aim 2. Compare the risk flag to the current suicide risk identification process (e.g. practice as usual) within 3 diverse jails. Aim 3. Evaluate implementation factors to inform the design of a future hybrid trial and integration within jails, working with state Medicaid and the Department of Health and Human Services. Improved suicide risk identification in jails could decrease the adverse impacts that suicide has on those who are detained, family members, correctional staff, the institution and community (i.e. liability, costs). Our long-term goal of this research targets jail systems by implementing an automated ‘suicide risk flag’ – derived from prior health records, resulting in improved detection at intake that would lead to intervention to reduce suicide attempts and suicide deaths within the jail. The assembled team has experience with development of the model, familiarity and experience implementing screening tools within jails, and integrating and analyzing jail and Medicaid data. The project leverages an established partnership between the team and criminal justice system. This project will inform an R01 hybrid effectiveness-implementation trial to assess whether the use of a suicide risk flag derived from this algorithm results in access to evidence based intervention within the jail resulting in a reduction in suicide attempts and death within these jail settings and post-release.
摘要项目#3 尽管存在专业和认证标准以指导自杀风险的识别,但很少有监狱有效 在预订时筛选这种风险(拦截2)。鉴于人们预订监狱的人可能不太在 向纠正官报告思想和行为,当前的识别惯例不足。可能 有可能增强监狱中的识别方法,复制一种在社区卫生中开发的方法 系统。使用来自七个卫生系统的一般人群样本,精神卫生研究网络 开发了一种自杀风险模型,以使用电子健康记录和保险来预测自杀企图/死亡 索赔数据。索赔记录用于创建导致风险分数的模型 对于医务人员,请提醒他们自杀风险增加的可能性。复制此验证,使用 具有综合医疗补助索赔数据的监狱人口可能会导致司法类似的身份证明过程 - 参与监狱摄入量(预订)的个人可以帮助发现谁进入监狱 通过模型确定的风险将与自杀未遂和自杀死亡的风险进行比较。 监狱内的惯例惯例。因为没有标准化过程可以识别 监狱内的自杀风险,每个监狱的筛查过程将分别评估。该建议将利用 三个在一个州的地理和人口统计学上多样化的监狱,提高了调查结果的普遍性。 目标1。用监狱人口样本验证自杀风险模型(三个监狱;所有在 特定时间长度),使用医疗补助索赔和重要记录数据。目标2。将风险标志与电流进行比较 自杀风险识别过程(例如,在3个潜水员监狱中进行练习)。目标3。评估实施 为未来的混合审判和综合性设计的因素,与州医疗补助和 卫生与公共服务部。改善监狱中的自杀风险识别可能会减少 自杀对成立的人,家庭成员,纠正人员,机构的不利影响 和社区(即责任,费用)。我们的这项研究的长期目标是针对监狱系统 实施自动化的“自杀风险标志” - 源自先前的健康记录,从而改善 摄入时发现会导致干预以减少自杀未遂和自杀死亡 监狱。组装团队具有开发模型,熟悉和经验的经验 在监狱内实施筛查工具,并整合和分析监狱和医疗补助数据。项目 利用团队与刑事司法系统之间建立的伙伴关系。该项目将告知 R01混合有效性实施试验,以评估是否使用自杀风险标志 算法导致监狱内获得基于证据的干预措施,导致自杀减少 这些监狱设置和释放后的尝试和死亡。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheryl M PIMLOTT- KUBIAK其他文献

Sheryl M PIMLOTT- KUBIAK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Project 3: Suicide Risk Identification in Jails using Data Linkage and Automation
项目 3:使用数据链接和自动化识别监狱中的自杀风险
  • 批准号:
    10441875
  • 财政年份:
    2022
  • 资助金额:
    $ 25.14万
  • 项目类别:
Washington Obstetric-Fetal Pharmacology Research Unit
华盛顿产胎儿药理学研究单位
  • 批准号:
    7695403
  • 财政年份:
    2004
  • 资助金额:
    $ 25.14万
  • 项目类别:
CTN: Harvard University Northern New England Node
CTN:哈佛大学北新英格兰节点
  • 批准号:
    7384300
  • 财政年份:
    2002
  • 资助金额:
    $ 25.14万
  • 项目类别:
CTN: Harvard University Northern New England Node
CTN:哈佛大学北新英格兰节点
  • 批准号:
    7437556
  • 财政年份:
    2002
  • 资助金额:
    $ 25.14万
  • 项目类别:
Short Term Research Training for Health Professional St*
卫生专业人士短期研究培训*
  • 批准号:
    7224866
  • 财政年份:
    1981
  • 资助金额:
    $ 25.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了