Learning alerting models for clinical care from EMR data and human knowledge
从 EMR 数据和人类知识中学习临床护理警报模型
基本信息
- 批准号:10521549
- 负责人:
- 金额:$ 64.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAreaAutomobile DrivingBehaviorCaregiversCause of DeathClinicalClinical ManagementClinical TrialsComplicationComputerized Medical RecordComputersConduct Clinical TrialsDataDecision Support ModelDevelopmentEvaluationEvaluation StudiesEventFundingGenerationsGoalsGrowthHealthcareHumanHybridsImmunosuppressive AgentsImpact evaluationIndividualInformation ResourcesInpatientsIntensive Care UnitsInterventionKnowledgeLearningLiteratureMachine LearningMedical ErrorsMethodologyMethodsModelingMonitorOperative Surgical ProceduresOutcomeOutpatientsOutputPatient-Focused OutcomesPatientsPatternPerformancePharmaceutical PreparationsPhysiciansPilot ProjectsPlayPractice ManagementProcessProductionResearchResolutionResourcesRoleRunningSystemTacrolimusTimeTrainingWorkadjudicatebaseclinical careclinical practicedata archivehuman-in-the-loopimprovedknowledge baseliver transplantationmachine learning modelmachine learning predictionprogramsprospectivesecondary endpointtool
项目摘要
Abstract
Medical errors are more broadly defined as adverse clinical events that are preventable. Studies
show that medical errors remain one of the key challenges of health care and recent literature
ranks medical errors as one of the leading causes of death in the US. The urgency and the
scope of the problem prompt the development of solutions aimed to aid clinicians in reducing
such errors. Computer-based monitoring and alerting systems that rely on information in
electronic medical records (EMRs) play a key role in this effort. In the previous funding cycles,
our group has been developing an outlier-based model-driven alerting methodology with
significant potential to reduce medical errors. The method uses retrospective data to build
machine learning models that predict physician actions from a broad representation of patient
states. An alert is raised if a management action (or its omission) for the current patient deviates
significantly from predicted management actions for similar patients. As an example of an actual
alert generated by the system, consider a patient who has recently undergone a liver transplant
and receives tacrolimus as immunosuppressive agent. The patient suffers a complication and
undergoes corrective surgery; however, inadvertently, tacrolimus is not reordered following the
surgery. Since not receiving the expected medication represents a deviation from predicted
management practice in similar patients, it is a clinical outlier. Raising an alert to reorder the
medication is therefore appropriate. Our current alerting system is silently deployed on the
production electronic medical record system at UPMC and supports alerting in real-time.
The current proposal takes the research program in a bold new direction. Alerting models will be
enhanced using a variety of tools, including automatic evaluation of performance and the
inclusion of an adaptive ICU-specific knowledge-base in addition to multi-domain, multi-
resolution features derived from the EMR. Human experts will play a major role in determining
appropriateness and usefulness of alerts when generated in real-time, contribute to the dynamic
growth of the knowledge base, and evaluate the quality of the explanations provided for the
alerts. Finally, the alerting system will be deployed across 12 ICUs in a step-wedge clinical trial
to determine whether EHR-based alerting, when revealed to clinicians, modifies the rate and
timing of their actions. Secondary end-points will include alert performance metrics, process-
related outcomes, and patient-centered outcomes.
抽象的
医疗错误更广泛地定义为可预防的不良临床事件。研究
表明医疗错误仍然是医疗保健和最新文献的关键挑战之一
将医疗错误排名为美国的主要死亡原因之一。紧迫性和
问题的范围促使开发旨在帮助临床医生减少的解决方案
这样的错误。基于计算机的监视和警报系统,这些系统依赖于信息
电子病历(EMRS)在这项工作中起着关键作用。在以前的资金周期中,
我们的小组一直在开发一个基于离群的模型驱动的警报方法,
减少医疗错误的巨大潜力。该方法使用回顾性数据来构建
从患者的广泛代表中预测医师行动的机器学习模型
国家。如果对当前患者的管理措施(或其遗漏)偏离,则提高警报
显着来自类似患者的预测管理措施。作为实际的例子
系统产生的警报,考虑最近接受肝移植的患者
并接受他克莫司作为免疫抑制剂。患者患有并发症,
接受纠正手术;但是,无意中,克莫司在
外科手术。由于未接受预期药物代表与预测的偏差
在类似患者中的管理实践,这是一个临床异常值。提高警报以重新排序
因此,药物是适当的。我们当前的警报系统默默地部署在
UPMC生产电子病历系统,并支持实时提醒。
当前的提案将研究计划朝着大胆的新方向发展。警报模型将是
使用多种工具增强,包括对性能的自动评估和
除了多域,多域,还包括自适应ICU特异性知识基础
从EMR得出的分辨率特征。人类专家将在确定
实时产生警报的适当性和有用性,有助于动态
知识库的成长,并评估提供的解释的质量
警报。最后,警报系统将在逐步临床试验中部署在12个ICU中
确定基于EHR的警报是否在向临床医生透露时是否会修改费率和
他们行动的时机。次要终点将包括警报性能指标,过程 -
相关结果和以患者为中心的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gilles Clermont其他文献
Gilles Clermont的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gilles Clermont', 18)}}的其他基金
Learning alerting models for clinical care from EMR data and human knowledge
从 EMR 数据和人类知识中学习临床护理警报模型
- 批准号:
10705150 - 财政年份:2022
- 资助金额:
$ 64.49万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10630230 - 财政年份:2021
- 资助金额:
$ 64.49万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10371943 - 财政年份:2021
- 资助金额:
$ 64.49万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10494259 - 财政年份:2021
- 资助金额:
$ 64.49万 - 项目类别:
Endotypes of thrombocytopenia in the critically ill
危重症患者血小板减少症的内型
- 批准号:
9307982 - 财政年份:2016
- 资助金额:
$ 64.49万 - 项目类别:
Predictive Biosignatures for Complicated Novel H1N1 Influenza
复杂的新型 H1N1 流感的预测生物特征
- 批准号:
8443055 - 财政年份:2012
- 资助金额:
$ 64.49万 - 项目类别:
Model-based decision support for tight glucose control without hypoglycemia
基于模型的决策支持,可严格控制血糖而不会发生低血糖
- 批准号:
8176486 - 财政年份:2011
- 资助金额:
$ 64.49万 - 项目类别:
Model-based decision support for tight glucose control without hypoglycemia
基于模型的决策支持,可严格控制血糖而不会发生低血糖
- 批准号:
8309053 - 财政年份:2011
- 资助金额:
$ 64.49万 - 项目类别:
相似国自然基金
跨区域调水工程与区域经济增长:效应测度、机制探究与政策建议
- 批准号:72373114
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
新型城镇化与区域协调发展的机制与治理体系研究
- 批准号:72334006
- 批准年份:2023
- 资助金额:167 万元
- 项目类别:重点项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
- 批准号:82360345
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
Scientific and Public Outreach of Cell Type Taxonomies (SPOCTT) Initiative
细胞类型分类学的科学和公众推广 (SPOCTT) 计划
- 批准号:
10724950 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
African Genomics Data Hub Biomedical Knowledgebase
非洲基因组数据中心生物医学知识库
- 批准号:
10560722 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
Predictive Functions and Neural Mechanisms of Spontaneous Cortical Activity
自发皮质活动的预测功能和神经机制
- 批准号:
10572486 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别:
Mechanisms of NMDAR contribution to traumatic injury in retinal ganglion cells
NMDAR对视网膜神经节细胞创伤性损伤的作用机制
- 批准号:
10570666 - 财政年份:2023
- 资助金额:
$ 64.49万 - 项目类别: