AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
基本信息
- 批准号:10494259
- 负责人:
- 金额:$ 62.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAcute Renal Failure with Renal Papillary NecrosisAlgorithmsAnimalsArtificial IntelligenceCessation of lifeClinicClinicalCritical IllnessDataDependenceDialysis procedureElectronic Health RecordEventExcisionExpert OpinionExpert SystemsFrequenciesFutureHealth systemHealthcare SystemsHemorrhageHemorrhagic ShockHospital MortalityHospitalsHourHumanHypotensionHypovolemiaIntensive Care UnitsInterventionLeadLearningLinkLiquid substanceMeasurementMedical centerModelingMonitorMorbidity - disease rateObservational StudyOutcomePatient MonitoringPatientsPerformancePredictive AnalyticsProbabilityPsychological reinforcementRandomized Clinical TrialsReactionRecoveryRefractoryRenal Replacement TherapyRenal functionResolutionResourcesRiskStructureSystemTestingTimeTitrationsTrainingUniversitiesValidationVasoconstrictor AgentsWorkadjudicateadjudicationartificial intelligence algorithmaugmented intelligencebaseclinically relevantdata modelingdesigneffective therapyeffectiveness validationhemodynamicsimproved outcomelearning algorithmlearning strategymachine learning modelmortalitymortality riskorgan injuryoutcome predictionpersonalized interventionpersonalized risk predictionporcine modelpredicting responsepreventprospectiveresponserisk predictionusability
项目摘要
Abstract
Intradialytic hypotension (IDH) occurs in one-third of critically ill patients with acute kidney injury and treated
with kidney replacement therapy in the intensive care unit (ICU). Occurrence of IDH is associated with
increased resource utilization such as fluid and vasopressor administration, discontinuation of kidney
replacement therapy, decreased recovery of kidney function, dependence on kidney replacement therapy and
death. IDH is often unrecognized until it is well established, by which time patients are refractory to treatment
or have already developed organ injury. Thus, if one could accurately predict who and when patients develop
IDH, then effective preemptive treatments could be administered to reduce risk of IDH and improve outcomes.
Our preliminary work showed that advanced high-frequency data modeling and waveform analysis identified
patients at risk for hypotension within 2 minutes of monitoring in the ICU, and if monitored for 5 minutes,
differentiated between patients who would develop hypotension or remain stable over the next 48 hours. In this
proposal entitled “Artificial Intelligence Driven Acute Renal Replacement Therapy (AID-ART)”, we propose to
apply predictive analytics using linked electronic health record and high-frequency monitor data to critically ill
patients with acute kidney injury and undergoing intermittent and continuous kidney replacement therapies at
the University of Pittsburgh Medical Center and the Mayo Clinic ICUs. We will examine the accuracy of various
machine learning models to predict IDH risk-evaluating model performance, usability, alert frequency, lead time
and number needed to alert, and hospital mortality and dependence on kidney replacement therapy (Aim 1a);
predict response to a range of clinical interventions for IDH and subsequent clinical outcomes (Aim 1b); and
perform cross validation across the two healthcare systems (Aim 1c). We will construct reinforcement learning
systems to develop a rule-driven intervention for IDH alerts and measurement-driven responses to avoid and
respond to IDH based on principles of functional hemodynamic monitoring (Aim 2a). We will also develop a
reinforcement learning algorithm to learn an optimal intervention strategy based on the probability of events
rather than in reaction to IDH events (Aim 2b). We will silently deploy and evaluate the ability of this artificial
intelligence (AI) algorithm to forecast IDH risk and recommend interventions in real-time across the two
healthcare systems. We will then assess the validity of recommended interventions using an expert clinician
adjudication panel (Aim 3a); and will compare the AI recommended interventions with that of actual
interventions performed by bedside clinicians (Aim 3b). This proposal will be the harbinger of a future
multicenter randomized clinical trial to examine personalized risk prediction and AI-augmented management of
IDH among critically ill patients with acute kidney injury and undergoing kidney replacement therapy in the
intensive care unit.
抽象的
在三分之一的急性肾脏损伤患者中,酯内低血压(IDH)发生并接受治疗
在重症监护病房(ICU)中肾脏替代疗法。 IDH的出现与
增加资源利用(例如流体和加压器给药,肾中停用)
替代疗法,肾功能恢复的恢复,依赖肾脏替代疗法和
死亡。 IDH通常无法识别直到建立得很好,到此为止患者难治性治疗
或已经发生了器官损伤。如果有人能准确预测谁以及何时发展
IDH,可以进行有效的先发制人治疗,以降低IDH的风险并改善结果。
我们的初步工作表明,确定的高级高频数据建模和波形分析
在ICU监测后2分钟内有低血压的患者,如果监测5分钟,
区分会在接下来的48小时内会出现低血压或保持稳定的患者。在这个
提案为“人工智能驱动急性肾脏替代疗法(AID-ART)”,我们建议
使用链接的电子健康记录和高频监视器数据应用预测分析以重病
患有急性肾脏损伤的患者,并接受间歇性和连续的肾脏替代疗法
匹兹堡大学医学中心和梅奥诊所ICU。我们将检查各种的准确性
机器学习模型以预测IDH风险评估模型性能,可用性,警报频率,交货时间
需要警报,医院死亡率以及对肾脏替代疗法的依赖(AIM 1A);
预测对IDH和随后临床结果的一系列临床干预措施的反应(AIM 1B);和
在两个医疗保健系统(AIM 1C)上执行交叉验证。我们将构建强化学习
为IDH警报和测量驱动的响应开发规则驱动的干预措施的系统,以避免和
根据功能血流动力学监测原理(AIM 2A)对IDH做出反应。我们还将开发一个
增强学习算法以根据事件的可能性学习最佳干预策略
而不是对IDH事件的反应(AIM 2B)。我们将默默地部署和评估这种艺术的能力
智能(AI)算法以预测IDH的风险和建议干预措施,实时两者的实时干预措施
医疗保健系统。然后,我们将使用专家临床评估建议干预措施的有效性
调整面板(AIM 3A);并将将AI建议的干预措施与实际的干预措施进行比较
床旁临床医生执行的干预措施(AIM 3B)。该提议将是未来的预兆
多中心随机临床试验,以检查个性化的风险预测和ai-aigment管理的管理
在患有急性肾脏损伤的重症患者和接受肾脏替代疗法中的IDH中
重症监护室。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gilles Clermont其他文献
Gilles Clermont的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gilles Clermont', 18)}}的其他基金
Learning alerting models for clinical care from EMR data and human knowledge
从 EMR 数据和人类知识中学习临床护理警报模型
- 批准号:
10705150 - 财政年份:2022
- 资助金额:
$ 62.81万 - 项目类别:
Learning alerting models for clinical care from EMR data and human knowledge
从 EMR 数据和人类知识中学习临床护理警报模型
- 批准号:
10521549 - 财政年份:2022
- 资助金额:
$ 62.81万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10630230 - 财政年份:2021
- 资助金额:
$ 62.81万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10371943 - 财政年份:2021
- 资助金额:
$ 62.81万 - 项目类别:
Endotypes of thrombocytopenia in the critically ill
危重症患者血小板减少症的内型
- 批准号:
9307982 - 财政年份:2016
- 资助金额:
$ 62.81万 - 项目类别:
Predictive Biosignatures for Complicated Novel H1N1 Influenza
复杂的新型 H1N1 流感的预测生物特征
- 批准号:
8443055 - 财政年份:2012
- 资助金额:
$ 62.81万 - 项目类别:
Model-based decision support for tight glucose control without hypoglycemia
基于模型的决策支持,可严格控制血糖而不会发生低血糖
- 批准号:
8176486 - 财政年份:2011
- 资助金额:
$ 62.81万 - 项目类别:
Model-based decision support for tight glucose control without hypoglycemia
基于模型的决策支持,可严格控制血糖而不会发生低血糖
- 批准号:
8309053 - 财政年份:2011
- 资助金额:
$ 62.81万 - 项目类别:
相似海外基金
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 62.81万 - 项目类别:
Artificial Intelligence to Predict Outcomes in Patients with Acute Kidney Injury on Continuous Renal Replacement Therapy
人工智能预测急性肾损伤患者连续肾脏替代治疗的结果
- 批准号:
10658576 - 财政年份:2023
- 资助金额:
$ 62.81万 - 项目类别:
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:
10724048 - 财政年份:2023
- 资助金额:
$ 62.81万 - 项目类别:
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
- 批准号:
10734357 - 财政年份:2023
- 资助金额:
$ 62.81万 - 项目类别: