Model-Based Decisions in Sepsis
脓毒症基于模型的决策
基本信息
- 批准号:9249074
- 负责人:
- 金额:$ 27.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcuteAgeAnimal ModelBedsBiologicalCaringCessation of lifeCharacteristicsClinical MedicineClinical ResearchClinical TrialsClinical Trials DesignCollaborationsCommunitiesComplexComputer SimulationComputing MethodologiesCritical PathwaysDataData SetDevelopmentDisciplineDiscriminationDiseaseDisease OutcomeEpidemiologyEtiologyFailureFundingGenetic PolymorphismGoalsHealthcare SystemsHourHumanIndividualInfectionInflammationInflammatoryInflammatory ResponseInterventionIntervention TrialKnowledge DiscoveryMethodsModelingOrgan failureOrganismOutcomePatientsPharmacologyPhysiologicalPositioning AttributeProcessProtocols documentationRaceRandomizedRandomized Clinical TrialsRandomized Controlled TrialsRecoveryResearchResuscitationSepsisSeptic ShockSeverity of illnessSocietiesSubgroupSystemTechniquesTechnologyTestingTherapeuticTherapeutic AgentsTimeTreatment ProtocolsUnited States National Institutes of HealthUpdateValidationWeatherarmbaseclinically relevantcohortcontrol trialdesignhuman dataimmunoregulationimprovedindividualized medicineinsightinter-individual variationmathematical methodsnovel therapeuticspathogenpersonalized medicinepre-clinicalprogramsprospectivepublic health relevancerandomized trialsextreatment strategytrial design
项目摘要
DESCRIPTION (provided by applicant): Large randomized clinical trials of immunomodulatory interventions for acute inflammatory diseases such as sepsis have had a dismal track record. The biological complexity of the host-pathogen interaction and the potential large impact of a successful treatment on the health care system and society position diseases such as sepsis as ideal test beds for model-based therapeutic approaches, as proposed in the FDA critical path document and the NIH roadmap initiative. Yet, there is a paucity of organism-level computational models of inflammation. More fundamental however, is the lack of human data sets where such models could be validated. Such a data set would be extraordinarily expensive to assemble and is highly unlikely to be acquired merely for testing model-based interventions in the absence of models with demonstrated validity. The NIH-funded Protocolized Care for Early Septic Shock (ProCESS) study is currently examining the impact of early resuscitation in victims of severe sepsis in a 1350 patient prospective randomized trial and will produce a data set with a granularity that will not only help to understand the processes involved in sepsis, but also the biological consequences of a physiologic goal-directed treatment protocol. The overarching goal of the program outlined in this proposal is to validate computational models of human sepsis using data from the ProCESS study through advanced mathematical and computational methods. We have assembled a transdisciplinary group of modelers and clinicians with an eloquent track record of successful collaboration on developing, calibrating and testing in silico models of acute inflammation, and of sepsis in particular, of different levels of granularity. We believe that validation of in silico models in a large clinically relevant cohort is absolutely cruial to the legitimization of computational modeling as a technology that will prove pivotal to the design of smarter randomized interventional trials in general, and of personalized therapies in particular. Leveraging data and preliminary analyses from the ProCESS trial on the one hand and an extensive existing transdisciplinary effort at expanding existing computational models of the acute inflammatory response on the other will also provide an unprecedented opportunity to gain mechanistic understanding of the processes leading to organ failure and death, systemic recovery and unexpected failure.
描述(由申请人提供):针对急性炎症性疾病(如脓毒症)的免疫调节干预措施的大型随机临床试验(败血症)的记录很沮丧。正如FDA关键路径文档和NIH RoadMap倡议中提出的那样,宿主 - 病原体相互作用的生物学复杂性以及成功治疗对医疗保健系统和社会位置疾病(例如败血症)的潜在巨大影响。然而,炎症的生物水平计算模型很少。但是,更基本的是缺乏可以验证此类模型的人类数据集。这样的数据集的组装将非常昂贵,并且在没有证明有效性的模型的情况下,不太可能仅用于测试基于模型的干预措施。 NIH资助的早期败血性休克(过程)研究的协议护理目前正在研究1350例患者前瞻性随机试验中早期复苏对严重败血症受害者的影响,并将产生具有颗粒状的数据,这些数据不仅会有助于理解脓毒症的过程,还可以帮助了解物理学靶向靶向治疗方案的生物学后果。该提案中概述的程序的总体目标是使用流程研究中的数据通过高级数学和计算方法来验证人类败血症的计算模型。我们已经组建了一个跨学科的建模者和临床医生组,并在急性炎症模型中,尤其是不同水平的粒度水平,在开发,校准和测试方面取得了成功的合作记录。我们认为,在大型临床相关的队列中,在计算机模型中的验证绝对是对计算建模的合法化,这将证明这对于一般智能随机介入试验的设计至关重要,通常是个性化疗法。一方面利用过程试验中的数据和初步分析,以及广泛的现有的跨学科努力,以扩大另一方面的急性炎症反应的现有计算模型,这也将提供前所未有的机会,以获得对导致器官失败和死亡,死亡,系统恢复和意外失败的过程的机械理解。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
APT-MCMC, a C++/Python implementation of Markov Chain Monte Carlo for parameter identification.
APT-MCMC,马尔可夫链蒙特卡罗的 C /Python 实现,用于参数识别。
- DOI:10.1016/j.compchemeng.2017.11.011
- 发表时间:2018
- 期刊:
- 影响因子:4.3
- 作者:Zhang,LiAng;Urbano,Alisa;Clermont,Gilles;Swigon,David;Banerjee,Ipsita;Parker,RobertS
- 通讯作者:Parker,RobertS
A One-Nearest-Neighbor Approach to Identify the Original Time of Infection Using Censored Baboon Sepsis Data.
一种使用截尾狒狒脓毒症数据识别原始感染时间的最近邻方法。
- DOI:10.1097/ccm.0000000000001623
- 发表时间:2016
- 期刊:
- 影响因子:8.8
- 作者:Zhang,LiAng;Parker,RobertS;Swigon,David;Banerjee,Ipsita;Bahrami,Soheyl;Redl,Heinz;Clermont,Gilles
- 通讯作者:Clermont,Gilles
Mathematical modeling of energy consumption in the acute inflammatory response.
急性炎症反应中能量消耗的数学模型。
- DOI:10.1016/j.jtbi.2018.08.033
- 发表时间:2019
- 期刊:
- 影响因子:2
- 作者:Ramirez-Zuniga,Ivan;Rubin,JonathanE;Swigon,David;Clermont,Gilles
- 通讯作者:Clermont,Gilles
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gilles Clermont其他文献
Gilles Clermont的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gilles Clermont', 18)}}的其他基金
Learning alerting models for clinical care from EMR data and human knowledge
从 EMR 数据和人类知识中学习临床护理警报模型
- 批准号:
10705150 - 财政年份:2022
- 资助金额:
$ 27.77万 - 项目类别:
Learning alerting models for clinical care from EMR data and human knowledge
从 EMR 数据和人类知识中学习临床护理警报模型
- 批准号:
10521549 - 财政年份:2022
- 资助金额:
$ 27.77万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10630230 - 财政年份:2021
- 资助金额:
$ 27.77万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10371943 - 财政年份:2021
- 资助金额:
$ 27.77万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10494259 - 财政年份:2021
- 资助金额:
$ 27.77万 - 项目类别:
Endotypes of thrombocytopenia in the critically ill
危重症患者血小板减少症的内型
- 批准号:
9307982 - 财政年份:2016
- 资助金额:
$ 27.77万 - 项目类别:
Predictive Biosignatures for Complicated Novel H1N1 Influenza
复杂的新型 H1N1 流感的预测生物特征
- 批准号:
8443055 - 财政年份:2012
- 资助金额:
$ 27.77万 - 项目类别:
Model-based decision support for tight glucose control without hypoglycemia
基于模型的决策支持,可严格控制血糖而不会发生低血糖
- 批准号:
8176486 - 财政年份:2011
- 资助金额:
$ 27.77万 - 项目类别:
Model-based decision support for tight glucose control without hypoglycemia
基于模型的决策支持,可严格控制血糖而不会发生低血糖
- 批准号:
8309053 - 财政年份:2011
- 资助金额:
$ 27.77万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The Role of Dopamine in Cognitive Resilience to Alzheimer's Disease Pathology in Healthy Older Adults
多巴胺在健康老年人阿尔茨海默氏病病理认知弹性中的作用
- 批准号:
10678125 - 财政年份:2023
- 资助金额:
$ 27.77万 - 项目类别:
A Refined Murine Model of Post-sepsis Cognitive Impairment for Investigating Mitochondrial Abnormalities and Human ApoE4 Gene Polymorphisms
用于研究线粒体异常和人类 ApoE4 基因多态性的精制脓毒症后认知障碍小鼠模型
- 批准号:
10646579 - 财政年份:2023
- 资助金额:
$ 27.77万 - 项目类别:
Novel Combinations of Natural Product Compounds for Treatment of Alzheimer Disease and Related Dementias
用于治疗阿尔茨海默病和相关痴呆症的天然产物化合物的新组合
- 批准号:
10603708 - 财政年份:2023
- 资助金额:
$ 27.77万 - 项目类别:
Redox stress resilience in aging skeletal muscle
衰老骨骼肌的氧化还原应激恢复能力
- 批准号:
10722970 - 财政年份:2023
- 资助金额:
$ 27.77万 - 项目类别:
Contribution of Vitamin D Deficiency to Pathological Progression in Models of Cerebral Hypoperfusion
维生素 D 缺乏对脑低灌注模型病理进展的影响
- 批准号:
10725358 - 财政年份:2023
- 资助金额:
$ 27.77万 - 项目类别: