Learning alerting models for clinical care from EMR data and human knowledge
从 EMR 数据和人类知识中学习临床护理警报模型
基本信息
- 批准号:10705150
- 负责人:
- 金额:$ 63.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAreaAutomobile DrivingBehaviorCaregiversCause of DeathClinicalClinical ManagementClinical TrialsComplicationComputerized Medical RecordComputersConduct Clinical TrialsDataDecision Support ModelDevelopmentEvaluationEvaluation StudiesEventFundingGenerationsGoalsGrowthHealthcareHumanHybridsImmunosuppressive AgentsImpact evaluationIndividualInformation ResourcesInpatientsIntensive Care UnitsInterventionKnowledgeLearningLiteratureMachine LearningMedical ErrorsMethodologyMethodsModelingMonitorOperative Surgical ProceduresOutcomeOutpatientsOutputPatient-Focused OutcomesPatientsPatternPerformancePharmaceutical PreparationsPhysiciansPilot ProjectsPlayPractice ManagementProcessProductionResearchResolutionResourcesRoleRunningSystemTacrolimusTimeTrainingWorkadjudicationclinical careclinical practicedata archivedata integrationelectronic medical record systemhuman-in-the-loopimprovedknowledge baseknowledgebaseliver transplantationmachine learning modelmachine learning predictionprocess improvementprogramsprospectivesecondary endpointtool
项目摘要
Abstract
Medical errors are more broadly defined as adverse clinical events that are preventable. Studies
show that medical errors remain one of the key challenges of health care and recent literature
ranks medical errors as one of the leading causes of death in the US. The urgency and the
scope of the problem prompt the development of solutions aimed to aid clinicians in reducing
such errors. Computer-based monitoring and alerting systems that rely on information in
electronic medical records (EMRs) play a key role in this effort. In the previous funding cycles,
our group has been developing an outlier-based model-driven alerting methodology with
significant potential to reduce medical errors. The method uses retrospective data to build
machine learning models that predict physician actions from a broad representation of patient
states. An alert is raised if a management action (or its omission) for the current patient deviates
significantly from predicted management actions for similar patients. As an example of an actual
alert generated by the system, consider a patient who has recently undergone a liver transplant
and receives tacrolimus as immunosuppressive agent. The patient suffers a complication and
undergoes corrective surgery; however, inadvertently, tacrolimus is not reordered following the
surgery. Since not receiving the expected medication represents a deviation from predicted
management practice in similar patients, it is a clinical outlier. Raising an alert to reorder the
medication is therefore appropriate. Our current alerting system is silently deployed on the
production electronic medical record system at UPMC and supports alerting in real-time.
The current proposal takes the research program in a bold new direction. Alerting models will be
enhanced using a variety of tools, including automatic evaluation of performance and the
inclusion of an adaptive ICU-specific knowledge-base in addition to multi-domain, multi-
resolution features derived from the EMR. Human experts will play a major role in determining
appropriateness and usefulness of alerts when generated in real-time, contribute to the dynamic
growth of the knowledge base, and evaluate the quality of the explanations provided for the
alerts. Finally, the alerting system will be deployed across 12 ICUs in a step-wedge clinical trial
to determine whether EHR-based alerting, when revealed to clinicians, modifies the rate and
timing of their actions. Secondary end-points will include alert performance metrics, process-
related outcomes, and patient-centered outcomes.
抽象的
医疗错误更广泛地定义为可预防的不良临床事件。研究
表明医疗错误仍然是医疗保健和最新文献的主要挑战之一
将医疗错误列为美国的主要原因之一。紧迫性和
问题的范围促使制定解决方案,旨在帮助临床医生减少
这样的错误。基于计算机的监控和警报系统依赖于信息
电子病历 (EMR) 在这项工作中发挥着关键作用。在之前的融资周期中,
我们的团队一直在开发一种基于异常值的模型驱动的警报方法
减少医疗失误的巨大潜力。该方法使用回顾性数据来构建
机器学习模型可以根据患者的广泛代表性来预测医生的行为
州。如果当前患者的管理行为(或其遗漏)出现偏差,则会发出警报
与对类似患者的预测管理行动有显着差异。作为一个实际的例子
系统生成的警报,考虑最近接受过肝脏移植的患者
并接受他克莫司作为免疫抑制剂。患者出现并发症并且
接受矫正手术;然而,不经意间,他克莫司并未在以下情况下重新订购:
外科手术。由于没有接受预期的药物治疗代表与预期的偏差
在类似患者的管理实践中,它是一个临床异常值。发出警报以重新排序
因此药物治疗是适当的。我们当前的警报系统默默地部署在
UPMC 生产电子病历系统并支持实时警报。
当前的提案将研究计划带向了一个大胆的新方向。警报模型将是
使用各种工具进行增强,包括自动评估性能和
除了多领域、多领域知识之外,还包含自适应 ICU 特定知识库
来自 EMR 的分辨率特征。人类专家将在确定方面发挥重要作用
实时生成警报的适当性和有用性有助于动态
知识库的增长,并评估为知识库提供的解释的质量
警报。最后,该警报系统将在阶梯式临床试验中部署在 12 个 ICU 中
确定基于 EHR 的警报在向临床医生透露时是否会修改速率和
他们行动的时机。次要端点将包括警报性能指标、流程
相关结果和以患者为中心的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gilles Clermont其他文献
Gilles Clermont的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gilles Clermont', 18)}}的其他基金
Learning alerting models for clinical care from EMR data and human knowledge
从 EMR 数据和人类知识中学习临床护理警报模型
- 批准号:
10521549 - 财政年份:2022
- 资助金额:
$ 63.44万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10630230 - 财政年份:2021
- 资助金额:
$ 63.44万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10371943 - 财政年份:2021
- 资助金额:
$ 63.44万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10494259 - 财政年份:2021
- 资助金额:
$ 63.44万 - 项目类别:
Endotypes of thrombocytopenia in the critically ill
危重症患者血小板减少症的内型
- 批准号:
9307982 - 财政年份:2016
- 资助金额:
$ 63.44万 - 项目类别:
Predictive Biosignatures for Complicated Novel H1N1 Influenza
复杂的新型 H1N1 流感的预测生物特征
- 批准号:
8443055 - 财政年份:2012
- 资助金额:
$ 63.44万 - 项目类别:
Model-based decision support for tight glucose control without hypoglycemia
基于模型的决策支持,可严格控制血糖而不会发生低血糖
- 批准号:
8176486 - 财政年份:2011
- 资助金额:
$ 63.44万 - 项目类别:
Model-based decision support for tight glucose control without hypoglycemia
基于模型的决策支持,可严格控制血糖而不会发生低血糖
- 批准号:
8309053 - 财政年份:2011
- 资助金额:
$ 63.44万 - 项目类别:
相似国自然基金
开发区跨界合作网络的形成机理与区域效应:以三大城市群为例
- 批准号:42301183
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitigating the Impact of Stigma and Shame as a Barrier to Viral Suppression Among MSM Living with HIV and Substance Use Disorders
减轻耻辱感和羞耻感对感染艾滋病毒和药物滥用的 MSM 的病毒抑制造成的影响
- 批准号:
10683694 - 财政年份:2023
- 资助金额:
$ 63.44万 - 项目类别:
Radioresistant Innate Immunity in SAVI Tissue-Specific Autoinflammation
SAVI 组织特异性自身炎症中的抗辐射先天免疫
- 批准号:
10752556 - 财政年份:2023
- 资助金额:
$ 63.44万 - 项目类别:
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 63.44万 - 项目类别: