Mayo Clinic HeartShare Clinical Center
梅奥诊所 HeartShare 临床中心
基本信息
- 批准号:10323121
- 负责人:
- 金额:$ 28.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdipose tissueAlgorithmsArtificial IntelligenceAutomobile DrivingBeliefBiologicalBusinessesCardiacCardiovascular DiseasesClinicClinicalClinical DataClinical InvestigatorClinical ResearchClinical TrialsCollaborationsCommunitiesComplexConsensusDataData CollectionData ScienceData ScientistData SetDiagnosisDiseaseEFRACEnrollmentEtiologyFunctional disorderFutureGenerationsGoalsHeartHeart failureImmersionIndustryInternshipsIntervention TrialLeadMachine LearningMedicalMethodsMissionModelingMuscleMyocardialPatient RecruitmentsPatientsPatternPhenotypePhysiologicalProcessProductivityProgram DevelopmentProteinsProteomicsProtocols documentationPublic HealthResearchResearch PersonnelResourcesScienceSkeletal MuscleSpecific qualifier valueSystemic diseaseTechnologyTestingTherapeuticTranslationsUnited States National Institutes of Healthaptamerbasecirculating biomarkersclinical centerclinical practicecomplex dataeffective therapyexperiencehemodynamicslarge datasetsnovel diagnosticsnovel markernovel therapeutic interventionpreservationprogramssenescenceskill acquisitionsuccesssupervised learningtargeted agenttargeted treatmentunsupervised learning
项目摘要
PROJECT SUMMARY/ABSTRACT
This is Mayo Clinic’s application to participate in the NIH HeartShare Research Consortium as a HeartShare
Clinical Center (CC). Our goal is to collaborate with the other HeartShare Investigators to elucidate the
pathophysiology of heart failure (HF) with preserved ejection fraction (HFpEF) and discover novel diagnostic
and therapeutic approaches. Multiple pathophysiologic processes may ultimately lead to different HFpEF
phenotypes, though the specific mechanisms remain largely undefined. It is also not known whether standard
clinical information can identify patients with different mechanistic etiologies, which is necessary to provide
targeted therapies in clinical trials and eventually in clinical practice. Our proposal outlines four specific aims. In
Specific Aim 1: We document that Mayo Clinic has the resources and the Mayo HeartShare Team has the
expertise and track record of productivity in HFpEF and relevant related diseases, clinical research, patient
recruitment and retention, data science, and collaborative team science to help drive the success of
HeartShare Network. In Specific Aim 2: We propose a broad mechanistic phenotyping protocol providing
quantitative variables reflective of senescence, systemic disease processes, and multi-organ integrity (L2
data), which are used as input variables in unsupervised machine learning (ML) models. We hypothesize that
this approach will allow identification of unique HFpEF pathophysiologic phenogroups (clusters). We also
propose invasive hemodynamic signatures, trans-cardiac gradients of circulating biomarkers and myocardial,
adipose and skeletal muscle tissue characterization (L3 data) be obtained in a subset within each HFpEF
pathophysiologic phenogroup. We hypothesize these L3 data will enhance identification of targeted therapeutic
strategies. Lastly, we outline supervised ML using EHR data to develop automatable algorithms to accurately
identify the HeartShare HFpEF pathophysiological phenogroups derived using L2 data. We hypothesize that if
successful, this approach will enhance translation of HeartShare findings by allowing automated identification
of patients in the different HFpEF phenogroups for enrollment in clinical trials of agents targeting their specific
pathophysiology. In Specific Aim 3: We propose that use of circulating proteins alone (n=5000; defined by the
SOMAScanTM Aptamer based platform) as input variables for unsupervised ML models will identify unique
HFpEF pathophysiologic phenotypes (clusters). In Specific Aim 4: We outline the Mayo HeartShare Research
Skills Development Program. Providing HFpEF clinical investigators a short-term intensive immersion
experience by collaboration with a data scientist intern in the Mayo Cardiovascular Disease AI Internship or
a long term dedicated program in data science as a Mayo Kern Center Scholar in Data Science will equip a
new generation of HFpEF investigators with a robust data science toolbox to drive future discovery.
项目摘要/摘要
这是梅奥诊所(Mayo Clinic
临床中心(CC)。我们的目标是与其他心脏调查人员合作,以阐明
具有保留的射血分数(HFPEF)的心力衰竭的病理生理(HF)并发现新型诊断
和治疗方法。多个病理生理过程最终可能导致不同的HFPEF
表型,尽管具体机制在很大程度上不确定。也不知道是否标准
临床信息可以识别具有不同机理病因的患者,这是提供的
在临床试验中,最终在临床实践中采用靶向疗法。我们的建议概述了四个具体目标。在
特定目标1:我们记录了梅奥诊所拥有资源,而梅奥的心夏团队有
HFPEF和相关疾病,临床研究,患者的生产力的专业知识和记录
招聘和保留,数据科学和协作团队科学,以帮助推动
心莎威网络。在特定目的2中:我们提出了一个广泛的机械表型协议提供
定量变量反映了感应,全身性疾病过程和多器官完整性(L2)
数据),在无监督的机器学习(ML)模型中用作输入变量。我们假设这一点
这种方法将允许识别独特的HFPEF病理生理现象(簇)。我们也是
建议侵入性血液动力学特征,循环生物标志物和心肌的跨心脏梯度,
在每个HFPEF内的子集中获得脂肪和骨骼肌组织表征(L3数据)
病理生理现象。我们假设这些L3数据将增强对目标治疗的识别
策略。最后,我们使用EHR数据概述了监督ML,以开发自动算法以准确
识别使用L2数据得出的心脏夏形HFPEF病理生理现象。我们假设如果
成功,这种方法将通过允许自动识别来增强心脏病的翻译
不同HFPEF现象中的患者在针对其特定的药物的临床试验中入学
病理生理学。在特定目标3中:我们建议单独使用循环蛋白(n = 5000;由
基于somascantm apamer的平台)作为无监督ML模型的输入变量,将确定独特的
HFPEF病理生理表型(簇)。在特定目的4:我们概述了梅奥心脏研究
技能开发计划。提供HFPEF临床研究人员短期密集浸入
与蛋黄酱心血管疾病AI实习的数据科学家实习生合作的经验
作为数据科学的长期专门计划,作为数据科学的梅奥·克恩中心学者将装备
新一代HFPEF研究人员具有强大的数据科学工具箱,以推动未来的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barry A. Borlaug其他文献
HEMODYNAMIC RESPONSES TO ARTERIAL VASODILATION FUNDAMENTALLY DIFFER IN HEART FAILURE WITH PRESERVED VERSUS REDUCED EJECTION FRACTION
- DOI:
10.1016/s0735-1097(11)60196-4 - 发表时间:
2011-04-05 - 期刊:
- 影响因子:
- 作者:
Shmuel Schwartzenberg;Margaret M. Redfield;Aaron M. From;Sorajja Paul;Rick A. Nishimura;Barry A. Borlaug - 通讯作者:
Barry A. Borlaug
Impact of Epicardial Adipose Tissue in Heart Failure with Preserved Ejection Fraction
- DOI:
10.1016/j.cardfail.2018.07.018 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Katlyn E. Koepp;Masaru Obokata;Yogesh N. Reddy;Thomas P. Olson;Barry A. Borlaug - 通讯作者:
Barry A. Borlaug
IS MID ASCENDING AORTIC DIAMETER SMALLER IN PATIENTS WITH HYPERTENSION OR HEART FAILURE WITH PRESERVED EJECTION FRACTION?
- DOI:
10.1016/s0735-1097(10)60595-5 - 发表时间:
2010-03-09 - 期刊:
- 影响因子:
- 作者:
Selma F. Mohammed;Barry A. Borlaug;Alessandro Cataliotti;Margaret M. Redfield - 通讯作者:
Margaret M. Redfield
SHOULD NORMAL CUTOFF VALUES FOR E/E’ AND BNP DIFFER IN THE PRESENCE OF OBESITY?
- DOI:
10.1016/s0735-1097(10)60871-6 - 发表时间:
2010-03-09 - 期刊:
- 影响因子:
- 作者:
Aaron Matthew From;Carolyn S.P. Lam;Sridevi R. Pitta;Prasanna V. Kumar;Kais A. Balbissi;Jeffrey D. Booker;Guy S. Reeder;Inder M. Singh;Paul Sorajja;Barry A. Borlaug - 通讯作者:
Barry A. Borlaug
RIGHT TO LEFT SHUNTING THROUGH PATENT FORAMEN OVALE DURING SIMULATED EPISODES OF OBSTRUCTIVE SLEEP APNEA
- DOI:
10.1016/s0735-1097(12)62138-x - 发表时间:
2012-03-27 - 期刊:
- 影响因子:
- 作者:
Tomas Konecny;Amber D. Khann;Jan Novak;Abdi A. Jama;Jan Bukartyk;Marek Orban;Tomas Kara;Barry A. Borlaug;Virend K. Somers;Guy Reeder - 通讯作者:
Guy Reeder
Barry A. Borlaug的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barry A. Borlaug', 18)}}的其他基金
HL-Inorganic Nitrite to Enhance Benefits from Exercise Training in Heart Failure with preserved Ejection Fraction
HL-无机亚硝酸盐可增强心力衰竭运动训练的益处并保留射血分数
- 批准号:
9252549 - 财政年份:2016
- 资助金额:
$ 28.08万 - 项目类别:
HL-Inorganic Nitrite to Enhance Benefits from Exercise Training in Heart Failure with preserved Ejection Fraction
HL-无机亚硝酸盐可增强心力衰竭运动训练的益处并保留射血分数
- 批准号:
9459406 - 财政年份:2016
- 资助金额:
$ 28.08万 - 项目类别:
相似国自然基金
脂肪组织新型内分泌因子的鉴定及功能研究
- 批准号:82330023
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
脂肪干细胞外泌体miRNA-299a-3p调控巨噬细胞Thbs1缓解脂肪组织衰老的机制研究
- 批准号:82301753
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管周围脂肪组织TRPV1通道通过脂联素调控肥胖相关高血压的机制研究
- 批准号:82300500
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
糖尿病脂肪组织中SIRT3表达降低进而上调外泌体miR-146b-5p促进肾小管脂毒性的机制研究
- 批准号:82370731
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
CXCL1/CXCR2信号轴上调Bcl-2促进筋膜定植巨噬细胞迁移在皮下脂肪组织原位再生中的机制研究
- 批准号:82360615
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 28.08万 - 项目类别:
Image-based risk assessment to identify women at high-risk for breast cancer
基于图像的风险评估可识别乳腺癌高危女性
- 批准号:
10759110 - 财政年份:2023
- 资助金额:
$ 28.08万 - 项目类别:
Trimming the fat with small proteins: Micropeptides in adipogenesis
用小蛋白质减少脂肪:脂肪生成中的微肽
- 批准号:
10655394 - 财政年份:2022
- 资助金额:
$ 28.08万 - 项目类别:
Identifying biomarker signatures of prognostic value for Multisystem Inflammatory Syndrome in Children (MIS-C)
识别儿童多系统炎症综合征 (MIS-C) 预后价值的生物标志物特征
- 批准号:
10320491 - 财政年份:2021
- 资助金额:
$ 28.08万 - 项目类别:
Developing tools for the unbiased analysis and visualization of scRNA-seq data
开发用于 scRNA-seq 数据公正分析和可视化的工具
- 批准号:
10279320 - 财政年份:2021
- 资助金额:
$ 28.08万 - 项目类别: