Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
基本信息
- 批准号:10636536
- 负责人:
- 金额:$ 62.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbdomenAccident and Emergency departmentAddressAdipose tissueAdultAffectAlgorithmsAmericanAortaAtherosclerosisBody CompositionCardiologyCardiovascular Diagnostic TechniquesCardiovascular DiseasesCardiovascular systemCessation of lifeClassificationClinicClinicalComputed Tomography ScannersComputerized Medical RecordDataData SetDetectionEarly DiagnosisEligibility DeterminationEnsureEquationEquityEthnic OriginEventExhibitsFutureGoalsImageInsuranceInterventionLabelLiverMeasuresMedical ImagingMethodsModelingMorbidity - disease rateMorphologic artifactsMuscleMyocardial InfarctionMyocardial IschemiaPatient riskPatientsPerformancePhenotypePilot ProjectsPopulationPopulation HeterogeneityPrimary PreventionProtocols documentationQuality ControlRaceRadiationRadiology SpecialtyReaderRecommendationRecording of previous eventsRiskRisk EstimateScanningSiteStrokeSubgroupTechniquesTestingThree-Dimensional ImagingTissuesTrainingUncertaintyValidationVariantVascular calcificationWorkX-Ray Computed Tomographyabdominal CTautomated segmentationboneburden of illnesscalcificationcardiometabolic riskcardiometabolismcardiovascular disorder preventioncardiovascular disorder riskcardiovascular healthcohortcomorbiditycontrast enhanced computed tomographycostdeep learningdeep learning algorithmdeep learning modeldigital twinearly screeningefficacious treatmenthealth equityheart disease riskhigh riskimaging studyimprovedinnovationlearning strategylifestyle interventionmortalitymultimodal datamultimodalitypatient stratificationpatient subsetspharmacologicpredictive modelingpreventquantitative imagingradiologistrisk predictionsegmentation algorithmsocioeconomicsstatisticsstroke eventsuccesssupervised learningtool
项目摘要
PROJECT SUMMARY
Atherosclerotic cardiovascular disease (ASCVD) is the main cause of morbidity and mortality worldwide, and
affects 18+ million adults nationally. However, 80% of ASCVD deaths may be prevented with prompt intervention
following early screening for ASCVD risk – a powerful rationale for the unmet need of accurate subclinical
ASCVD diagnoses. Thus, in this study we assess whether a deep learning (DL)-based analysis of pre-existing
abdominal computed tomography (CT) scans paired with electronic medical records (EMR) improves prediction
of cardiovascular death, myocardial infarction, and stroke in a large multi-site primary prevention population. We
will conduct this study in a large, diverse, real-world population with an external validation to ascertain whether
we can improve upon the clinically-utilized pooled cohort equations (PCE) that have numerous shortcomings.
20+ million abdominal CT scans performed annually in the US. While these scans answer specific clinical
questions, quantitative information related to tissue phenotypes associated with cardiometabolic risk is simply
not evaluated. DL algorithms can be used to quantify body composition metrics for adipose tissue, muscle, bone,
liver, and vascular calcifications, which can all be used to improve upon the PCE for determining cardiovascular
events. In aim 1 of our proposal, we will build automated segmentation algorithms with a built-in quality control
mechanism to extract these body composition metrics in 125,000+ diverse subjects to ascertain population-level
normative values of tissue size and radiodensity. In aim 2, we will augment the PCE covariates with these body
composition values and additional EMR features for predicting ASCVD risk with advanced DL models. Moreover,
we will devise new algorithmic approaches for improving health equity by ensuring similar model performance
across patient sub-groups of PCE eligibility, race/ethnicity, insurance type, and CT scanner make/model. In aim
3, we will build a new ASCVD risk estimator that directly uses 3D imaging data. We will augment this end-to-end
prediction approach by integrating multi-modal models that leverage both imaging data and EMR data. Realizing
the need for improved explainability of DL solutions, we will build digital twins of each subject to describe why
model predictions are being made and what changes a patient could make to lower ASCVD risk.
We will train all models on data from Stanford (25k patients), test on data from Stanford (8k patients), and
externally validate the models on data from three Mayo Clinic sites (20k+ patients) to assess the generalizability
of our tools. We have assembled an inter-disciplinary MPI team of DL experts, cardiologists, and abdominal
radiologists to build such ASCVD risk models. We develop innovative tools to improve accuracy, generalizability,
bias, and explainability of DL-based ASCVD risk models. Our long-term goal is to enable early detection of silent
atherosclerosis and trigger interventions that may ultimately prevent over 800,000 death, myocardial infarction,
and stroke events in diverse Americans annually.
项目概要
动脉粥样硬化性心血管疾病(ASCVD)是全世界发病和死亡的主要原因,
然而,通过及时干预,80% 的 ASCVD 死亡是可以预防的。
早期筛查 ASCVD 风险——准确的亚临床需求未得到满足的有力理由
因此,在本研究中,我们评估是否对已有的情况进行基于深度学习 (DL) 的分析。
腹部计算机断层扫描 (CT) 扫描与电子病历 (EMR) 相结合可改善预测
大型多站点一级预防人群中心血管死亡、心肌梗塞和中风的发生率。
将在大量、多样化的现实世界人群中进行这项研究,并进行外部验证以确定是否
我们可以改进临床使用的合并队列方程(PCE),但它有很多缺点。
美国每年进行超过 2000 万次腹部 CT 扫描,而这些扫描可回答特定的临床问题。
问题,与心脏代谢风险相关的组织表型相关的定量信息很简单
未评估的 DL 算法可用于量化脂肪组织、肌肉、骨骼的身体成分指标。
肝脏和血管钙化,这些都可以用来改善心血管测定的 PCE
在我们提案的目标 1 中,我们将构建具有内置质量控制的自动分割算法。
提取超过 125,000 名不同受试者的身体成分指标以确定人群水平的机制
在目标 2 中,我们将增强组织大小和放射密度的标准值与这些物体的 PCE 协变量。
成分值和附加 EMR 功能,用于使用先进的 DL 模型预测 ASCVD 风险。
我们将设计新的算法方法,通过确保类似的模型性能来改善健康公平
涵盖 PCE 资格、种族/民族、保险类型和 CT 扫描仪品牌/型号的患者亚组。
3、我们将构建一个直接使用 3D 成像数据的新 ASCVD 风险估计器,我们将增强这种端到端的能力。
通过集成利用成像数据和 EMR 数据的多模态模型进行预测。
由于需要提高深度学习解决方案的可解释性,我们将为每个主题构建数字孪生来描述原因
模型预测正在进行中,以及患者可以做出哪些改变来降低 ASCVD 风险。
我们将根据斯坦福大学(25,000 名患者)的数据训练所有模型,对斯坦福大学(8,000 名患者)的数据进行测试,并
根据来自三个 Mayo Clinic 站点(超过 20,000 名患者)的数据对模型进行外部验证,以评估普遍性
我们组建了一支由 DL 专家、心脏病专家和腹部专家组成的跨学科 MPI 团队。
我们开发创新工具来提高准确性、普遍性、
基于深度学习的 ASCVD 风险模型的偏差和可解释性我们的长期目标是实现沉默的早期检测。
动脉粥样硬化并引发干预措施,最终可能预防超过 80 万人死亡、心肌梗死、
每年都有不同美国人发生中风事件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Akshay Chaudhari其他文献
Akshay Chaudhari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
腹腔巨噬细胞通过IL-16信号通路介导子宫内膜异位症慢性腹部疼痛
- 批准号:32371043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向小器官精准分割的腹部CT影像多器官分割技术研究
- 批准号:62303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向腹部创伤的超声辅助诊断关键技术研究
- 批准号:62371121
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
C/EBPZ调控鸡腹部脂肪组织形成的生物学功能和作用机制研究
- 批准号:32360825
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于肠道菌群介导TLR4/MyD88/NF-κB通路研究腹部推拿干预IBS肠道机械屏障的作用机制
- 批准号:
- 批准年份:2022
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Abdominal Pain in Older Patients in Emergency Departments
急诊科老年患者的腹痛
- 批准号:
10739136 - 财政年份:2023
- 资助金额:
$ 62.27万 - 项目类别:
Non-Invasive Measurement of Pulmonary Dysfunction in Children with Cerebral Palsy
脑瘫儿童肺功能障碍的无创测量
- 批准号:
10646934 - 财政年份:2023
- 资助金额:
$ 62.27万 - 项目类别:
Portable Ultrasound System for Automated Detection of Abdominal Free-Fluid
用于自动检测腹部游离液体的便携式超声系统
- 批准号:
9907383 - 财政年份:2017
- 资助金额:
$ 62.27万 - 项目类别:
Portable Ultrasound System for Automated Detection of Abdominal Free-Fluid
用于自动检测腹部游离液体的便携式超声系统
- 批准号:
9345755 - 财政年份:2017
- 资助金额:
$ 62.27万 - 项目类别: