Image-based risk assessment to identify women at high-risk for breast cancer
基于图像的风险评估可识别乳腺癌高危女性
基本信息
- 批准号:10759110
- 负责人:
- 金额:$ 40.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdipose tissueAlgorithmsAmericanArchitectureAreaArtificial IntelligenceBreastBreast Cancer DetectionBreast Cancer Early DetectionBreast Cancer Risk FactorCaringCause of DeathClinicalComputer softwareDataDatabasesDetectionDevelopmentDiagnosisEarly DiagnosisEnsureFeasibility StudiesFundingGrantHealth care facilityHigh Risk WomanHospitalsImageIncidenceInfrastructureLegal patentLife StyleLinkMachine LearningMalignant NeoplasmsMammary Gland ParenchymaMammographyManualsMeasurementMeasuresMedicalMedical DeviceMedical ImagingMedical RecordsMethodsModelingPatient riskPatient-Focused OutcomesPatientsPerformancePhasePopulationPositioning AttributePredictive FactorPreventive careProcessPrognostic FactorProtocols documentationQuestionnairesROC CurveReaderRecommendationResearchRiskRisk AssessmentRisk EstimateRisk FactorsRisk ReductionScanningScreening procedureSecureSmall Business Technology Transfer ResearchTeaching MethodTechnologyTechnology AssessmentTimeTissuesValidationVisitVisualizationWomanWorkagedautomated analysisbreast densitybreast pathologycancer diagnosiscancer invasivenessclinical practicecyber securitydensitydesigndigitalhigh riskimaging modalityimprovedinnovationinnovative technologiesmalignant breast neoplasmnovelnovel strategiesphase 1 studypreventrisk stratificationroutine screeningscreeningsupplemental screeningtimelinetumoryoung woman
项目摘要
7. PROJECT SUMMARY
Breast cancer is the most common cancer worldwide and the most common cancer diagnosed in American
women. While there has been good progress regarding detection and treatment methods, breast cancer remains
the primary cause of death from malignant tumors. Hence, there is a critical need for the development of novel
predictive and prognostic factors. Risk assessments are currently performed by medical professionals to identify
women that could benefit from enhanced breast surveillance or risk reduction methods. Unfortunately, most
diagnosed cases do not have an identifiable risk factor, making it a challenge to identify high risk women prior to
onset using classical risk assessments. This medical difficulty has resulted in the development of several artificial
intelligence and machine learning approaches being applied to screening mammograms to identify breast cancer
earlier. However, these approaches search for abnormalities that indicate an existing cancer and have been
found to not be generalizable to the entire screening population. It is becoming more common for younger women
to be diagnosed with breast cancer, and the cancers tend to be more aggressive. This Phase I proposes to
create a risk assessment product for mammography that is not based on machine learning but rather a novel
measurement of risky dense tissue. Alteration in the architecture and composition of microenvironment is a well-
recognized component of breast pathologies and some changes may occur prior to tumor onset. WAVED
Medical’s measurement is sensitive to these alternations in identifying areas of dense tissue that is tumor prone.
This feasibility study seeks to demonstrate that the novel measurement of risky dense breast tissue has the
potential to be implemented into classical risk models. Phase I specific aims are to 1) improve efficiency in
identifying risky dense tissue on mammograms by creating a secure database that contains preprocessed data
for optimized analysis, and 2) establish risky dense tissue as a better predictor of breast cancer than traditional
mammographic percent density (MPD), by showing risky dense tissue is more accurate in predicting breast
cancer than MPD. Follow-on Phase II efforts will include developing a platform and integrating WAVED into
hospital infrastructure for evaluating mammograms. These improvements will create a risk assessment product
that increases the accuracy of medical professionals at identifying high-risk patients and ensures patients are
receiving additional medical care, such as supplemental screening or risk reduction methods, to prevent invasive
cancer. Successful completion of the project has potential to advance state-of-the-art breast cancer assessments
to provide quantification of risky dense tissue to identify high-risk patients needing preventive care.
7。项目摘要
乳腺癌是全球最常见的癌症,也是美国诊断出的最常见的癌症
女性。尽管在检测和治疗方法方面取得了良好的进展,但乳腺癌仍然存在
恶性肿瘤死亡的主要原因。因此,对新颖的发展有迫切的需求
预测性和预后因素。目前,医疗专业人员目前进行风险评估以识别
可能受益于增强乳房监测或降低风险方法的女性。不幸的是,大多数
被诊断的病例没有可识别的危险因素,这使得在识别高风险女性之前是一个挑战
使用经典风险评估发作。这种医疗困难导致了几种艺术的发展
智力和机器学习方法应用于筛查乳房X线照片以识别乳腺癌
较早。但是,这些方法寻找表明现有癌症的异常,并且已经
发现无法推广到整个筛查人群。对于年轻女性来说,它变得越来越普遍
被诊断出患有乳腺癌,癌症往往更具侵略性。我提出的这个阶段
为乳房X线摄影创建风险评估产品,而不是基于机器学习,而是基于新颖的
测量风险密集的组织。微环境的结构和组成的改变是一个很好的
乳腺病理的公认成分和一些变化可能发生在肿瘤发作之前。挥舞着
医学的测量对这些替代方案敏感,以识别易于肿瘤的密集组织区域。
这项可行性研究旨在证明风险密集的乳腺组织的新型测量
潜力被实施到经典风险模型中。第一阶段的特定目的是1)提高效率
通过创建包含预处理数据的安全数据库来识别乳房X线照片上有风险的密集组织
进行优化的分析,以及2)建立风险的密集组织作为乳腺癌的更好预测指标
乳房X线摄影百分比密度(MPD),通过显示危险的密集组织在预测乳房方面更为准确
癌症比MPD。后续第二阶段的工作将包括开发一个平台并将波整合到
用于评估乳房X线照片的医院基础设施。这些改进将创建风险评估产品
这提高了医疗专业人员在识别高危患者方面的准确性,并确保患者是
接受额外的医疗服务,例如补充筛查或降低风险方法,以防止侵入性
癌症。成功完成该项目有可能提高最先进的乳腺癌评估
为了提供数量的风险密集组织以识别高危患者需要预防性护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kendra Batchelder其他文献
Kendra Batchelder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Simulation and Education Tool for Physical Examinations of Orthopedic Pathologies
用于骨科病理体检的模拟和教育工具
- 批准号:
10484180 - 财政年份:2022
- 资助金额:
$ 40.6万 - 项目类别:
Multiparametric MRI for the investigation of coronary microvascular disease
多参数 MRI 用于研究冠状动脉微血管疾病
- 批准号:
10420091 - 财政年份:2022
- 资助金额:
$ 40.6万 - 项目类别:
Multiparametric MRI for the investigation of coronary microvascular disease
多参数 MRI 用于研究冠状动脉微血管疾病
- 批准号:
10621313 - 财政年份:2022
- 资助金额:
$ 40.6万 - 项目类别:
Hyaluronan as a mediator of intrauterine growth restriction-induced islet dysfunction in type 2 diabetes
透明质酸作为 2 型糖尿病宫内生长受限诱导的胰岛功能障碍的介质
- 批准号:
10303293 - 财政年份:2021
- 资助金额:
$ 40.6万 - 项目类别:
Hyaluronan as a mediator of intrauterine growth restriction-induced islet dysfunction in type 2 diabetes
透明质酸作为 2 型糖尿病宫内生长受限诱导的胰岛功能障碍的介质
- 批准号:
10436997 - 财政年份:2021
- 资助金额:
$ 40.6万 - 项目类别: