Rectifying splicing mutations in blood disorders by gene editing
通过基因编辑纠正血液疾病中的剪接突变
基本信息
- 批准号:10305646
- 负责人:
- 金额:$ 86.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-20 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:5&apos Splice SiteAdultAllelesAutologous TransplantationBloodBlood CellsBone Marrow TransplantationCD34 geneCell CycleCell physiologyCellsDNA RepairDependenceDevelopmentDiseaseElectroporationEngraftmentErythrocytesErythroidGasesGene AbnormalityGene ExpressionGene-ModifiedGenesGenetic DiseasesGlobinGoalsHematological DiseaseHematopoiesisHematopoietic stem cellsHemoglobinIn VitroInheritedMediatingMessenger RNAMethodsModelingModificationMutationMyelogenousNonhomologous DNA End JoiningOutcomePathogenicityPathway interactionsPatientsPatternPersonsProcessProductionProtocols documentationRNA SplicingReagentRecoveryRegulatory ElementRibonucleoproteinsShwachman-Diamond syndromeSickle Cell TraitSiteSite-Directed MutagenesisSpecificitySystemTherapeuticTransfusionUncertaintyUntranslated RNAbasebase editingbeta Thalassemiagene repairgene therapygenome editinggenome-widegenotoxicityhomologous recombinationimprovedinnovationinsertion/deletion mutationmutantnucleasepreservationreconstitutionrepairedrestorationstem cell functiontargeted treatmenttherapeutic developmenttherapeutic genome editing
项目摘要
Inherited blood disorders are especially favorable targets for therapeutic genome editing in
that ex vivo modification of patient hematopoietic stem cells (HSCs) followed by autologous
transplantation can result in lifelong recovery of normal blood cell production. Recently we
developed an improved version of SpCas9 (3xNLS-SpCas9) and an efficient electroporation protocol
for genome editing of CD34+ hematopoietic stem and progenitor cells (HSPCs) using SpCas9
ribonucleoprotein (RNP) that leads to highly efficient on-target gene modification, preservation of
HSC function and undetectable off-target editing.
In principle , homologous recombination (HR) or base editing could be harnessed for the precise
correction of disease-associated mutations. However, the requirement for co-delivery of donor
template sequence, the cell cycle dependence of HR-based gene repair, and the competing
nonhomologous end joining/microhomology mediated end joining mutagenic repair pathways
complicate achieving efficient HR in HSCs. Base editing Is currently limited in its targeting range
with uncertainty about potential genotoxicity and HSC efficiency. Nuclease-induced predictable
end-joining repair (with indels) is a highly efficient means of gene modification, and could
itself be therapeutic depending on the allelic outcome. This strategy may be particularly
effective for noncoding mutations that impact regulatory elements, such as those that dictate the
pattern of mRNA splicing. We hypothesize that genome editing, by directing efficient non-templated
end-joining DNA repair in HSCs, could restore gene expression and provide durable therapy for
inherited blood disorders associated with splicing mutations.
Two of the most common mutations associated with transfusion-dependent β-thalassemia are HBB IVS1-
11OG>A and IVS2-654C> T which introduce intronic aberrant splice acceptor and donor sites
respectively.
Using SpCas9 and LbCas12a RNPs, we have successfully disrupted these inappropriate regulatory
elements in HSPCs from multiple patient donors. The erythrocytes differentiated in vitro from
these nuclease-treated cells display robust increase in normally spliced HBB mRNA and restored
adult hemoglobin (HbA) expression, suggesting that this is a potent strategy for therapeutic
development. In Aims 1 & 2 we will develop Cas9 and Cas12a editing reagents for these splicing
mutations through nuclease optimization, unbiased genome-wide off-target analysis, and assessment
of HSC editing rates through xenoengraftment of edited β-thalassemia patient HSPCs. In Aim 3, we
will develop efficient strategies for the non-templated gene editing repair of splice junction
disrupting mutations for the IVS2+2T>C mutation in SBOS commonly associated with Shwachman
Diamond syndrome. The successful completion of these studies w/1 define editing approaches for the
efficient HSC repair of a range of pathogenic splicing mutations that impact hematopoiesis and enable the
development of targeted reagents based on existing nuclease platforms for definitive gene therapy.
遗传性血液疾病是热基因组编辑的尤其有利的靶标
患者造血干细胞(HSC)的体内修饰,然后自体
移植会导致正常血细胞产生的终生恢复。最近我们
开发了改进的SPCAS9(3XNLS-SPCAS9)和有效的电穿孔协议的版本
用于使用SPCAS9的CD34+造血茎和祖细胞(HSPC)的基因组编辑
核糖核蛋白(RNP)可导致高效的靶向基因修饰,保留
HSC功能和无法检测的脱靶编辑。
原则上,可以利用同源重组(HR)或基础编辑来精确
纠正疾病相关突变。但是,捐赠者共同交付的要求
模板序列,基于HR基因修复的细胞周期依赖性以及竞争
非本体末端连接/微学介导的末端连接诱变修复途径
使HSC中有效的HR复杂化。基础编辑目前在其目标范围内有限
对潜在的遗传毒性和HSC效率的不确定性。核酸酶诱导的可预测
最终连接维修(带有indels)是一种高效的基因修饰手段,并且可以
本身是根据等位基因结果的理论。这种策略可能特别是
对于影响监管元件的非编码突变,例如决定了的非编码突变
mRNA剪接的模式。我们通过指导有效的非训练来假设基因组编辑
HSC中的最终结合DNA修复可以恢复基因表达,并提供持久的疗法
与剪接突变有关的遗传性血液疾病。
与输血依赖性的β-甲性贫血相关的两个最常见的突变是HBB IVS1-
11og> a和ivs2-654c> t引入内含异常的分裂受体和供体站点
分别。
使用SPCAS9和LBCAS12A RNP,我们成功地破坏了这些不适当的监管
来自多个患者捐助者的HSPC的元素。红细胞在体外与
这些核酸酶处理的细胞在正常剪接的HBB mRNA中显示出强大的增加并恢复
成人血红蛋白(HBA)表达,这表明这是治疗的潜在策略
发展。在AIMS 1和2中,我们将开发CAS9和CAS12A编辑试剂
通过核酸酶优化,无偏基因组脱靶分析和评估的突变
HSC编辑速率通过编辑的β-thalassymia患者HSPC的异种汇率。在AIM 3中,我们
将制定有效的策略,用于剪接连接的非策略基因编辑修复
破坏与Shwachman相关的SBO中IVS2+2T> C突变的突变
钻石综合征。这些研究的成功完成了,其中1个定义了编辑方法
有效的HSC修复了影响造血的一系列致病剪接突变,并使得能够
基于现有的核酸酶平台开发定向基因疗法的试剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Evan Bauer其他文献
Daniel Evan Bauer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Evan Bauer', 18)}}的其他基金
Chemotherapy-free cure of hemoglobin disorders through base editing
通过碱基编辑无需化疗即可治愈血红蛋白疾病
- 批准号:
10754114 - 财政年份:2023
- 资助金额:
$ 86.17万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10296877 - 财政年份:2021
- 资助金额:
$ 86.17万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10473734 - 财政年份:2021
- 资助金额:
$ 86.17万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10627940 - 财政年份:2021
- 资助金额:
$ 86.17万 - 项目类别:
Gene editing ELANE to understand and treat severe congenital neutropenia
基因编辑 ELANE 了解和治疗严重先天性中性粒细胞减少症
- 批准号:
10580862 - 财政年份:2020
- 资助金额:
$ 86.17万 - 项目类别:
Therapeutic BCL11A enhancer gene editing to induce fetal hemoglobin in β-hemoglobinopathy patients
治疗性 BCL11A 增强子基因编辑诱导 β 血红蛋白病患者胎儿血红蛋白
- 批准号:
10317505 - 财政年份:2020
- 资助金额:
$ 86.17万 - 项目类别:
Therapeutic BCL11A enhancer gene editing to induce fetal hemoglobin in β-hemoglobinopathy patients
治疗性 BCL11A 增强子基因编辑诱导 β 血红蛋白病患者胎儿血红蛋白
- 批准号:
10090251 - 财政年份:2020
- 资助金额:
$ 86.17万 - 项目类别:
Gene editing ELANE to understand and treat severe congenital neutropenia
基因编辑 ELANE 了解和治疗严重先天性中性粒细胞减少症
- 批准号:
10338097 - 财政年份:2020
- 资助金额:
$ 86.17万 - 项目类别:
相似海外基金
Post-transcriptional regulation of Kv11.1 (hERG) channel expression by alternative splicing and polyadenylation
通过选择性剪接和多聚腺苷酸化对 Kv11.1 (hERG) 通道表达进行转录后调控
- 批准号:
10626127 - 财政年份:2022
- 资助金额:
$ 86.17万 - 项目类别:
Post-transcriptional regulation of Kv11.1 (hERG) channel expression by alternative splicing and polyadenylation
通过选择性剪接和多聚腺苷酸化对 Kv11.1 (hERG) 通道表达进行转录后调控
- 批准号:
10442308 - 财政年份:2022
- 资助金额:
$ 86.17万 - 项目类别:
Role of the U-12 dependent Minor Spliceosome in Early Embryo Development and Brain Disease
U-12 依赖性小剪接体在早期胚胎发育和脑疾病中的作用
- 批准号:
10493118 - 财政年份:2021
- 资助金额:
$ 86.17万 - 项目类别:
Rectifying splicing mutations in blood disorders by gene editing
通过基因编辑纠正血液疾病中的剪接突变
- 批准号:
10531577 - 财政年份:2019
- 资助金额:
$ 86.17万 - 项目类别:
Neurochemistry and Genetics of Drosophila CaMKII
果蝇 CaMKII 的神经化学和遗传学
- 批准号:
8260198 - 财政年份:1996
- 资助金额:
$ 86.17万 - 项目类别: