Rectifying splicing mutations in blood disorders by gene editing
通过基因编辑纠正血液疾病中的剪接突变
基本信息
- 批准号:10531577
- 负责人:
- 金额:$ 85.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-20 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:5&apos Splice SiteAdultAllelesAutologous TransplantationBloodBlood CellsBone Marrow TransplantationCD34 geneCell CycleCell physiologyCellsDNA RepairDependenceDevelopmentDiseaseElectroporationEngraftmentErythrocytesErythroidGasesGene AbnormalityGene ExpressionGene ModifiedGenesGenetic DiseasesGlobinGoalsHematological DiseaseHematopoiesisHematopoietic stem cellsHemoglobinIn VitroInheritedMediatingMessenger RNAMethodsModelingModificationMutationMyelogenousNonhomologous DNA End JoiningOutcomePathogenicityPathway interactionsPatientsPatternPersonsProcessProductionProtocols documentationRNA SplicingReagentRecoveryRegulatory ElementRibonucleoproteinsShwachman-Diamond syndromeSiteSite-Directed MutagenesisSpecificitySystemTherapeuticTransfusionUncertaintyUntranslated RNAbase editingbeta Thalassemiagene repairgene therapygenome editinggenome-widegenotoxicityhomologous recombinationimprovedinnovationinsertion/deletion mutationmutantnucleasepreservationreconstitutionrepairedrestorationstem cell functiontargeted treatmenttherapeutic developmenttherapeutic genome editing
项目摘要
Inherited blood disorders are especially favorable targets for therapeutic genome editing in
that ex vivo modification of patient hematopoietic stem cells (HSCs) followed by autologous
transplantation can result in lifelong recovery of normal blood cell production. Recently we
developed an improved version of SpCas9 (3xNLS-SpCas9) and an efficient electroporation protocol
for genome editing of CD34+ hematopoietic stem and progenitor cells (HSPCs) using SpCas9
ribonucleoprotein (RNP) that leads to highly efficient on-target gene modification, preservation of
HSC function and undetectable off-target editing.
In principle , homologous recombination (HR) or base editing could be harnessed for the precise
correction of disease-associated mutations. However, the requirement for co-delivery of donor
template sequence, the cell cycle dependence of HR-based gene repair, and the competing
nonhomologous end joining/microhomology mediated end joining mutagenic repair pathways
complicate achieving efficient HR in HSCs. Base editing Is currently limited in its targeting range
with uncertainty about potential genotoxicity and HSC efficiency. Nuclease-induced predictable
end-joining repair (with indels) is a highly efficient means of gene modification, and could
itself be therapeutic depending on the allelic outcome. This strategy may be particularly
effective for noncoding mutations that impact regulatory elements, such as those that dictate the
pattern of mRNA splicing. We hypothesize that genome editing, by directing efficient non-templated
end-joining DNA repair in HSCs, could restore gene expression and provide durable therapy for
inherited blood disorders associated with splicing mutations.
Two of the most common mutations associated with transfusion-dependent β-thalassemia are HBB IVS1-
11OG>A and IVS2-654C> T which introduce intronic aberrant splice acceptor and donor sites
respectively.
Using SpCas9 and LbCas12a RNPs, we have successfully disrupted these inappropriate regulatory
elements in HSPCs from multiple patient donors. The erythrocytes differentiated in vitro from
these nuclease-treated cells display robust increase in normally spliced HBB mRNA and restored
adult hemoglobin (HbA) expression, suggesting that this is a potent strategy for therapeutic
development. In Aims 1 & 2 we will develop Cas9 and Cas12a editing reagents for these splicing
mutations through nuclease optimization, unbiased genome-wide off-target analysis, and assessment
of HSC editing rates through xenoengraftment of edited β-thalassemia patient HSPCs. In Aim 3, we
will develop efficient strategies for the non-templated gene editing repair of splice junction
disrupting mutations for the IVS2+2T>C mutation in SBOS commonly associated with Shwachman
Diamond syndrome. The successful completion of these studies w/1 define editing approaches for the
efficient HSC repair of a range of pathogenic splicing mutations that impact hematopoiesis and enable the
development of targeted reagents based on existing nuclease platforms for definitive gene therapy.
遗传性血液疾病是治疗性基因组编辑特别有利的目标
对患者造血干细胞 (HSC) 进行体外修饰,然后进行自体移植
最近我们发现移植可以终生恢复正常的血细胞生成。
开发了 SpCas9 的改进版本 (3xNLS-SpCas9) 和高效的电穿孔方案
使用 SpCas9 对 CD34+ 造血干细胞和祖细胞 (HSPC) 进行基因组编辑
核糖核蛋白 (RNP) 可实现高效的靶向基因修饰、保存
HSC 功能和不可检测的脱靶编辑。
原则上,同源重组(HR)或碱基编辑可用于精确的
然而,与疾病相关的突变的纠正需要共同交付捐赠者。
模板序列、基于 HR 的基因修复的细胞周期依赖性以及竞争
非同源末端连接/微同源介导的末端连接诱变修复途径
HSC 中实现高效 HR 的复杂性目前仅限于其目标范围。
潜在的遗传毒性和 HSC 效率的不确定性。
末端连接修复(使用插入缺失)是一种高效的基因修饰手段,并且可以
其本身是否具有治疗作用取决于等位基因的结果。
对于影响调控元件的非编码突变有效,例如那些决定
我们通过指导有效的非模板化来对抗基因组编辑。
HSC 中的末端连接 DNA 修复可以恢复基因表达并提供持久的治疗
与剪接突变相关的遗传性血液疾病。
与输血依赖性 β 地中海贫血相关的两种最常见突变是 HBB IVS1-
11OG>A 和 IVS2-654C> T 引入内含子异常剪接受体和供体位点
分别。
使用 SpCas9 和 LbCas12a RNP,我们成功地破坏了这些不适当的监管
来自多个患者捐献者的 HSPC 中的元素在体外分化为红细胞。
这些经核酸酶处理的细胞表现出正常剪接的 HBB mRNA 的强劲增加并恢复
成人血红蛋白 (HbA) 表达,表明这是一种有效的治疗策略
在目标 1 和 2 中,我们将为这些剪接开发 Cas9 和 Cas12a 编辑试剂。
通过核酸酶优化、无偏见的全基因组脱靶分析和评估进行突变
在目标 3 中,我们通过异种移植编辑过的 β-地中海贫血患者 HSPC 来提高 HSC 编辑率。
将开发剪接点非模板基因编辑修复的有效策略
SBOS 中 IVS2+2T>C 突变的破坏性突变通常与 Shwachman 相关
钻石综合症的成功完成,定义了编辑方法。
有效修复造血干细胞一系列影响造血功能的致病性剪接突变
基于现有核酸酶平台开发靶向试剂,用于明确的基因治疗。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genome-wide detection of CRISPR editing in vivo using GUIDE-tag.
- DOI:10.1038/s41467-022-28135-9
- 发表时间:2022-01-21
- 期刊:
- 影响因子:16.6
- 作者:Liang SQ;Liu P;Smith JL;Mintzer E;Maitland S;Dong X;Yang Q;Lee J;Haynes CM;Zhu LJ;Watts JK;Sontheimer EJ;Wolfe SA;Xue W
- 通讯作者:Xue W
Optimization of Nuclear Localization Signal Composition Improves CRISPR-Cas12a Editing Rates in Human Primary Cells.
- DOI:10.1089/genbio.2022.0003
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Kevin Luk;Pengpeng Liu;Jing Zeng;Yetao Wang;Stacy A. Maitland;Feston Idrizi;Karthikeyan Ponnienselvan;L. Zhu;J. Luban;D. E. Bauer;S. Wolfe
- 通讯作者:Kevin Luk;Pengpeng Liu;Jing Zeng;Yetao Wang;Stacy A. Maitland;Feston Idrizi;Karthikeyan Ponnienselvan;L. Zhu;J. Luban;D. E. Bauer;S. Wolfe
A brown fat-enriched adipokine, ASRA, is a leptin receptor antagonist that stimulates appetite.
ASRA 是一种富含棕色脂肪的脂肪因子,是一种瘦素受体拮抗剂,可刺激食欲。
- DOI:10.1101/2023.09.12.557454
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Huang,Lei;Liu,Pengpeng;Du,Yong;Pan,Dongning;Lee,Alexandra;Wolfe,ScotA;Wang,Yong-Xu
- 通讯作者:Wang,Yong-Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Evan Bauer其他文献
Daniel Evan Bauer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Evan Bauer', 18)}}的其他基金
Chemotherapy-free cure of hemoglobin disorders through base editing
通过碱基编辑无需化疗即可治愈血红蛋白疾病
- 批准号:
10754114 - 财政年份:2023
- 资助金额:
$ 85.55万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10296877 - 财政年份:2021
- 资助金额:
$ 85.55万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10473734 - 财政年份:2021
- 资助金额:
$ 85.55万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10627940 - 财政年份:2021
- 资助金额:
$ 85.55万 - 项目类别:
Gene editing ELANE to understand and treat severe congenital neutropenia
基因编辑 ELANE 了解和治疗严重先天性中性粒细胞减少症
- 批准号:
10580862 - 财政年份:2020
- 资助金额:
$ 85.55万 - 项目类别:
Therapeutic BCL11A enhancer gene editing to induce fetal hemoglobin in β-hemoglobinopathy patients
治疗性 BCL11A 增强子基因编辑诱导 β 血红蛋白病患者胎儿血红蛋白
- 批准号:
10317505 - 财政年份:2020
- 资助金额:
$ 85.55万 - 项目类别:
Therapeutic BCL11A enhancer gene editing to induce fetal hemoglobin in β-hemoglobinopathy patients
治疗性 BCL11A 增强子基因编辑诱导 β 血红蛋白病患者胎儿血红蛋白
- 批准号:
10090251 - 财政年份:2020
- 资助金额:
$ 85.55万 - 项目类别:
Gene editing ELANE to understand and treat severe congenital neutropenia
基因编辑 ELANE 了解和治疗严重先天性中性粒细胞减少症
- 批准号:
10338097 - 财政年份:2020
- 资助金额:
$ 85.55万 - 项目类别:
相似国自然基金
12q13.11区易感位点通过调控COL2A1可变剪接影响骨关节炎发生的机制研究
- 批准号:82372458
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
乙肝病毒5’剪接位点调节病毒转录和复制的研究
- 批准号:32370165
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥ROE1蛋白介导剪接体识别内含子的5’剪接位点和调控其剪接效率的分子机理研究
- 批准号:32171293
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
由隐含剪接位点产生的EZH2新亚型的分子功能及其在心肌肥厚中的作用
- 批准号:82070231
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于结构和表观遗传信息的基因选择性剪接位点识别
- 批准号:61861036
- 批准年份:2018
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Post-transcriptional regulation of Kv11.1 (hERG) channel expression by alternative splicing and polyadenylation
通过选择性剪接和多聚腺苷酸化对 Kv11.1 (hERG) 通道表达进行转录后调控
- 批准号:
10626127 - 财政年份:2022
- 资助金额:
$ 85.55万 - 项目类别:
Post-transcriptional regulation of Kv11.1 (hERG) channel expression by alternative splicing and polyadenylation
通过选择性剪接和多聚腺苷酸化对 Kv11.1 (hERG) 通道表达进行转录后调控
- 批准号:
10442308 - 财政年份:2022
- 资助金额:
$ 85.55万 - 项目类别:
Role of the U-12 dependent Minor Spliceosome in Early Embryo Development and Brain Disease
U-12 依赖性小剪接体在早期胚胎发育和脑疾病中的作用
- 批准号:
10493118 - 财政年份:2021
- 资助金额:
$ 85.55万 - 项目类别:
Rectifying splicing mutations in blood disorders by gene editing
通过基因编辑纠正血液疾病中的剪接突变
- 批准号:
10305646 - 财政年份:2019
- 资助金额:
$ 85.55万 - 项目类别:
Neurochemistry and Genetics of Drosophila CaMKII
果蝇 CaMKII 的神经化学和遗传学
- 批准号:
8260198 - 财政年份:1996
- 资助金额:
$ 85.55万 - 项目类别: