Structural Variation and Hematological Traits
结构变异和血液学特征
基本信息
- 批准号:10657020
- 负责人:
- 金额:$ 76.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAreaAtlasesBiologicalBiological ModelsBiologyBloodBlood CellsBlood PlateletsBlood coagulationBone Marrow CellsCardiovascular DiseasesCardiovascular systemCellsCellular biologyChromatinCirculationClinicalClinical Trials DesignCollaborationsCollectionComplexComputer softwareDNA SequenceDataData SetDiseaseDisease OutcomeEnsureErythrocytesExperimental DesignsGenesGeneticGenetic studyGenomeGenomic SegmentGenomicsGenotypeHeart DiseasesHematological DiseaseHematologyHematopoiesisHematopoieticHemostatic functionHeritabilityHumanHuman BiologyImmune responseIndividual DifferencesInflammationLeadershipLeukocytesLungLung diseasesMeasuresMethodologyMethodsModelingMolecularMultiomic DataNational Heart, Lung, and Blood InstituteNational Human Genome Research InstituteOutcomeParticipantPathogenesisPhasePhenotypePlayPopulationRegulationRepetitive SequenceResearchResearch PersonnelResourcesRoleSample SizeSamplingSleepSourceStructureTechnologyTestingThrombosisTimeTrans-Omics for Precision MedicineVariantalpha Globinbiobankcandidate validationclinical diagnosisclinically relevantcohortdatabase of Genotypes and Phenotypesepidemiology studyepigenome editingfunctional genomicsgenetic architecturegenetic associationgenome editinggenome sequencinggenome wide association studygenome-widegenome-wide analysisgenomic variationimprovedinsightinterdisciplinary approachmulti-ethnicnoveloxygen transportprecision medicineprogramsstem cellstraittranscriptome sequencingtranslational geneticstreatment responsevenous thromboembolismwhole genomeworking group
项目摘要
Red blood cells, white blood cells, and platelets are important for the clinical diagnosis of intrinsic blood cell and
hematopoietic disorders, and also as predictors of various heart, lung, and blood disease outcomes. Moreover,
hematologic quantitative traits are highly heritable and serve as a model system for studying the genetic
architecture of complex traits. While significant strides in understanding the genetic basis of hematological traits
have been made over the past decade, the wealth of whole genome sequencing (WGS) data from emerging
resources such as the NHLBI Trans-Omics for Precision Medicine (TOPMed) program provides an
unprecedented opportunity to gain further insight in several key areas, including the role of structural variants
(SVs). While a few common SVs (e.g., α-globin) are known to be associated with blood cell traits, a more
systematic and agnostic genome-wide search for SVs in large samples is required to identify new biology. The
centralized availability of deeply sequenced DNA from the NHLBI TOPMed and the NHGRI Centers for Common
Disease Genomics (CCDG) programs, along with genome-wide data from UK Biobank and other cohorts, allows
for full characterization of SVs genome-wide at population-scale. By improving the accuracy of genome-wide SV
calling for WGS data as implemented in our new Genvisis software package and by validating candidate causal
SVs using state-of-the-art gene-editing technologies in hematopoietic cells, our interdisciplinary approach will
facilitate the translation of genetic association findings into mechanistic insights, discover new biology underlying
hematopoiesis, and ultimately identify factors that account for individual differences in pathobiology or response
to treatments. In Aim 1, using WGS data from TOPMed and CCDG participants, we will apply novel methodology
to generate high-quality and more accurate SV calls than the SV calling algorithms currently available for both
WGS and existing array data. In Aim 2, we will use the newly generated SV calls to conduct single-variant and
gene-based segmental association analyses of SVs with blood cell traits and related clinical outcomes in up to
570,319 participants. Association findings will be replicated in up to 760,000 participants in populations/studies
not used in the discovery phase. SVs that are significantly associated with blood cell traits will subsequently be
tested for association with other blood disorders including clonal hematopoiesis of indeterminate potential (CHIP)
and VTE. In Aim 3, targeted long-range sequencing will be performed in selected samples to precisely localize
newly identified blood trait-associated SVs in complex genomic regions. We will also perform functional genomic
annotation of replicated blood cell trait-SV associations followed by state-of-the art gene-editing approaches to
understand novel mechanisms underlying genetic regulation of hematopoiesis. This model integrative approach
to advancing precision medicine research in heart, lung, and blood diseases will demonstrate for the first time
the role of SVs in the genetic architecture of hematologic traits and contribute to a better understanding of
hematopoiesis and pave the way for new research into Precision Medicine for blood diseases.
红细胞,白细胞和血小板对于内在血细胞的临床诊断和
造血疾病,也作为各种心脏,肺和血液疾病结局的预测指标。而且,
血液学定量特征是高度遗传的,并且是研究通用的模型系统
复杂特征的建筑。在理解血液学特征的遗传基础方面的显着步骤
在过去的十年中制作了整个基因组测序(WGS)数据的财富
诸如NHLBI跨媒体学的资源(TOPMED)计划提供了
前所未有的机会,可以在几个关键领域获得进一步的见解,包括结构变体的作用
(SVS)。虽然已知一些常见的SV(例如α-珠蛋白)与血细胞性状相关,但更多
需要在大型样本中对SVS进行系统和不可知论的全基因组搜索才能识别新的生物学。这
来自NHLBI的深度测序DNA的集中式可用性和NHGRI中心的共同供应
疾病基因组学(CCDG)计划,以及来自英国生物库和其他同类群体的全基因组数据,允许
为了在人口尺度上全面表征SVS全基因组。通过提高全基因组SV的准确性
呼吁在我们的新genvisis软件包中实现的WGS数据,并通过验证候选人催化
使用造血细胞中最先进的基因编辑技术的SVS,我们的跨学科方法将
促进将遗传关联发现转化为机械见解,发现新的生物学的基础
造血,并最终确定说明病原体或反应个体差异的因素
进行治疗。在AIM 1中,使用来自TopMed和CCDG参与者的WGS数据,我们将采用新方法
与当前可用于的SV调用算法相比,要生成高质量和更准确的SV调用
WGS和现有数组数据。在AIM 2中,我们将使用新生成的SV调用进行单变量和
基于基因的SVS基因分段分析与血细胞性状和相关临床结果的分析
570,319名参与者。协会发现将在人口/研究中最多760,000名参与者中复制
在发现阶段不使用。与血细胞性状显着相关的SV随后将是
测试与其他血液疾病的关联,包括不确定潜力的克隆造血(CHIP)
和VTE。在AIM 3中,将在选定的样品中进行针对的远程测序,以精确本地化
新鉴定的复杂基因组区域中与血状特征相关的SV。我们还将执行功能基因组
复制的血细胞性状SV关联的注释,然后是最先进的基因编辑方法
了解造血的遗传调节基础的新型机制。这种模型集成方法
在心脏,肺和血液疾病中推进精确医学研究将首次证明
SV在血液学特征的遗传结构中的作用,并有助于更好地理解
造血为血液疾病精确医学的新研究铺平了道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Evan Bauer其他文献
Daniel Evan Bauer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Evan Bauer', 18)}}的其他基金
Chemotherapy-free cure of hemoglobin disorders through base editing
通过碱基编辑无需化疗即可治愈血红蛋白疾病
- 批准号:
10754114 - 财政年份:2023
- 资助金额:
$ 76.56万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10296877 - 财政年份:2021
- 资助金额:
$ 76.56万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10473734 - 财政年份:2021
- 资助金额:
$ 76.56万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10627940 - 财政年份:2021
- 资助金额:
$ 76.56万 - 项目类别:
Gene editing ELANE to understand and treat severe congenital neutropenia
基因编辑 ELANE 了解和治疗严重先天性中性粒细胞减少症
- 批准号:
10580862 - 财政年份:2020
- 资助金额:
$ 76.56万 - 项目类别:
Therapeutic BCL11A enhancer gene editing to induce fetal hemoglobin in β-hemoglobinopathy patients
治疗性 BCL11A 增强子基因编辑诱导 β 血红蛋白病患者胎儿血红蛋白
- 批准号:
10317505 - 财政年份:2020
- 资助金额:
$ 76.56万 - 项目类别:
Therapeutic BCL11A enhancer gene editing to induce fetal hemoglobin in β-hemoglobinopathy patients
治疗性 BCL11A 增强子基因编辑诱导 β 血红蛋白病患者胎儿血红蛋白
- 批准号:
10090251 - 财政年份:2020
- 资助金额:
$ 76.56万 - 项目类别:
Gene editing ELANE to understand and treat severe congenital neutropenia
基因编辑 ELANE 了解和治疗严重先天性中性粒细胞减少症
- 批准号:
10338097 - 财政年份:2020
- 资助金额:
$ 76.56万 - 项目类别:
Rectifying splicing mutations in blood disorders by gene editing
通过基因编辑纠正血液疾病中的剪接突变
- 批准号:
10531577 - 财政年份:2019
- 资助金额:
$ 76.56万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 76.56万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 76.56万 - 项目类别:
Transcranial Ultrasound Algorithms and Device for Rapid Stroke Determination by Paramedics
用于医护人员快速确定中风的经颅超声算法和设备
- 批准号:
10730722 - 财政年份:2023
- 资助金额:
$ 76.56万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 76.56万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 76.56万 - 项目类别: