Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
基本信息
- 批准号:10473734
- 负责人:
- 金额:$ 192.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBiologicalBiological AssayBloodBlood CellsBlood PlateletsBlood PressureCRISPR interferenceCRISPR screenCRISPR-mediated transcriptional activationCRISPR/Cas technologyCardiovascular DiseasesCardiovascular systemCatalogsCell LineCell physiologyCellsCellular AssayChromatinClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComputing MethodologiesCoronary ArteriosclerosisDataData CollectionData SetDevelopmentDiseaseDisease susceptibilityDissectionDyslipidemiasElementsEpigenetic ProcessEquilibriumErythrocytesEthnic OriginEtiologyFetal HemoglobinFrequenciesGene ExpressionGene FrequencyGenesGeneticGenetic VariationGenomeGenotypeGoalsGoldHeart DiseasesHematological DiseaseHematologyHemoglobin concentration resultHigh Density Lipoprotein CholesterolHumanHuman GeneticsHypertensionIndividualLDL Cholesterol LipoproteinsLeukocytesLinkMachine LearningMeasuresMethodsModelingMolecularPatientsPhenotypePositioning AttributeProbabilityRegulatory ElementReportingResearchRiskRisk FactorsSchemeSerumTechnologyTestingValidationVariantWritingbasebase editingbase editorblood lipidcausal variantcomputational pipelinesdata sharingdesigndisorder riskfollow-upfunctional genomicsgenetic associationgenetic variantgenome editinggenome wide association studygenomic variationhigh throughput screeninghuman diseasemulti-ethnicmultimodalityneutrophilnext generationnovel therapeutic interventionopen sourceprecise genome editingpredictive modelingprogramsscreeningsexsingle-cell RNA sequencingtraitworking group
项目摘要
Project Summary
How genomic variation influences cellular function is a fundamental problem with tremendous importance for
human disease. While it has traditionally been difficult to study the effects of specific sequence variants in an
experimentally controlled manner, precise genome editing technologies such as CRISPR base editing enable
“writing” of trait-associated variants to cells to unravel their function. In this proposal, we will perform multi-modal
genome editing-based functional characterization of a total of 72,000 genomic variants associated with
cardiovascular diseases (CVDs) and hematological traits. CVD and blood traits are uniquely suited to functional
dissection because cardiovascular (coronary artery disease, high blood pressure, dyslipidemia) and blood traits
have among the best-powered multi-ethnic GWAS of any traits, and a substantial component of trait variability
can be captured in cellular assays that can be scaled to perform high-throughput screening.
We have assembled an interdisciplinary team of world-class experts to provide a generalizable pipeline to
unravel the functional impact of CVD and blood trait variants by integrating: (1) rich and ancestry-diverse human
genetic discoveries, (2) broadly targetable CRISPR base editors and efficient delivery to primary human cells,
(3) high-content assays to profile phenotypes at the levels of chromatin, gene expression and cellular function,
and (4) computational methods to design, interpret, visualize, and share experimental results.
In Aim 1, we will employ a robust, three-tiered variant prioritization scheme that incorporates evidence for disease
association from large, multi-ethnic GWAS as well as probability of causality to nominate variants for functional
assessment. Through this scheme, we will select variants associated with red blood cell and neutrophil traits,
coronary artery disease, blood pressure, and HDL and LDL cholesterol that span a range of allelic frequencies
and likely causality to test in high-throughput cellular assays.
In Aim 2, we will perform systematic cellular phenotype-based screens using base editors to install candidate
variants as well as CRISPR epigenetic inhibition and activation to explore variant-containing regulatory elements.
We will use eight established, scalable cellular phenotypic readouts, each of which will enable us to assess
which of 12,000 variants and variant-centered elements alter CVD and blood trait-associated cellular
phenotypes. We will additionally employ a high-throughput, genome-integrated chromatin accessibility assay to
assess which variants alter chromatin accessibility in trait-relevant cell lines. We will follow up with targeted single
cell RNA-seq of 5,600 variants in primary cells from donors of different sex and ethnicity.
In Aim 3, we will produce a catalog of validated variants and their association with phenotypes for each of the
proposed screens. We will collaborate with other IGVF groups to utilize these data to optimize models that predict
functional variants, regulatory elements and disease-causing biological mechanisms, ultimately leading to more
complete understanding of the genetic underpinnings of cardiovascular and blood disease risk.
项目概要
基因组变异如何影响细胞功能是一个非常重要的基本问题
虽然传统上很难研究特定序列变异对人类疾病的影响。
通过实验控制的方式,精确的基因组编辑技术(例如CRISPR碱基编辑)使得
将与性状相关的变异“写入”细胞以揭示其功能在本提案中,我们将执行多模式。
基于基因组编辑的总共 72,000 个基因组变异的功能表征
心血管疾病 (CVD) 和血液学特征特别适合功能性。
由于心血管(冠状动脉疾病、高血压、血脂异常)和血液特征而进行解剖
具有所有性状中最强大的多种族 GWAS 之一,并且具有性状变异性的重要组成部分
可以在细胞测定中捕获,并可以扩展以进行高通量筛选。
我们组建了一支由世界级专家组成的跨学科团队,为
通过整合以下因素来揭示 CVD 和血液性状变异的功能影响:(1) 丰富且血统多样化的人类
遗传发现,(2) 广泛靶向的 CRISPR 碱基编辑器和有效递送至原代人类细胞,
(3) 在染色质、基因表达和细胞功能水平上分析表型的高内涵分析,
(4) 设计、解释、可视化和共享实验结果的计算方法。
在目标 1 中,我们将采用稳健的三层变体优先级方案,其中包含疾病证据
来自大型、多种族 GWAS 的关联以及提名功能变异的因果关系概率
通过这个方案,我们将选择与红细胞和中性粒细胞特征相关的变异,
冠状动脉疾病、血压以及跨越一系列等位基因频率的 HDL 和 LDL 胆固醇
以及在高通量细胞测定中测试的可能因果关系。
在目标 2 中,我们将使用碱基编辑器进行基于细胞表型的系统筛选,以安装候选药物
变体以及 CRISPR 表观遗传抑制和激活,以探索包含变体的调控元件。
我们将使用八个已建立的、可扩展的细胞表型读数,每个读数都将使我们能够评估
12,000 个变异和以变异为中心的元素中的哪一个会改变 CVD 和血液性状相关的细胞
我们还将采用高通量、基因组整合的染色质可及性测定来检测表型。
评估哪些变异会改变性状相关细胞系中的染色质可及性,我们将跟进目标单一细胞系。
对来自不同性别和种族供体的原代细胞中的 5,600 个变异进行细胞 RNA 测序。
在目标 3 中,我们将生成经过验证的变体目录及其与每个基因表型的关联
我们将与其他 IGVF 小组合作,利用这些数据来优化预测模型。
功能变异、调控元件和致病生物机制,最终导致更多
完全了解心血管和血液疾病风险的遗传基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Evan Bauer其他文献
Daniel Evan Bauer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Evan Bauer', 18)}}的其他基金
Chemotherapy-free cure of hemoglobin disorders through base editing
通过碱基编辑无需化疗即可治愈血红蛋白疾病
- 批准号:
10754114 - 财政年份:2023
- 资助金额:
$ 192.88万 - 项目类别:
Targeting ZNF410 for HbF reactivation
靶向 ZNF410 进行 HbF 重新激活
- 批准号:
10608727 - 财政年份:2023
- 资助金额:
$ 192.88万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10296877 - 财政年份:2021
- 资助金额:
$ 192.88万 - 项目类别:
Comprehensive characterization of variants underlying heart and blood diseases with CRISPR base editing
通过 CRISPR 碱基编辑全面表征心脏和血液疾病的变异
- 批准号:
10627940 - 财政年份:2021
- 资助金额:
$ 192.88万 - 项目类别:
Gene editing ELANE to understand and treat severe congenital neutropenia
基因编辑 ELANE 了解和治疗严重先天性中性粒细胞减少症
- 批准号:
10580862 - 财政年份:2020
- 资助金额:
$ 192.88万 - 项目类别:
Therapeutic BCL11A enhancer gene editing to induce fetal hemoglobin in β-hemoglobinopathy patients
治疗性 BCL11A 增强子基因编辑诱导 β 血红蛋白病患者胎儿血红蛋白
- 批准号:
10317505 - 财政年份:2020
- 资助金额:
$ 192.88万 - 项目类别:
Therapeutic BCL11A enhancer gene editing to induce fetal hemoglobin in β-hemoglobinopathy patients
治疗性 BCL11A 增强子基因编辑诱导 β 血红蛋白病患者胎儿血红蛋白
- 批准号:
10090251 - 财政年份:2020
- 资助金额:
$ 192.88万 - 项目类别:
Gene editing ELANE to understand and treat severe congenital neutropenia
基因编辑 ELANE 了解和治疗严重先天性中性粒细胞减少症
- 批准号:
10338097 - 财政年份:2020
- 资助金额:
$ 192.88万 - 项目类别:
Rectifying splicing mutations in blood disorders by gene editing
通过基因编辑纠正血液疾病中的剪接突变
- 批准号:
10531577 - 财政年份:2019
- 资助金额:
$ 192.88万 - 项目类别:
相似国自然基金
基于Bacillus subtilis 细胞传感器介导的肠道环境中结直肠癌相关生物标志物的动态检测策略
- 批准号:82372355
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
CRISPR传感技术对稻田微生物甲基汞关键基因的检测机制研究
- 批准号:42377456
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于微流控芯片的赤潮微藻及其生物毒素同步快速定量检测研究
- 批准号:42307568
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一种用于生物呼吸标记物检测的中红外全固态超短脉冲激光器的研究
- 批准号:62305188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于镍纳米粒子催化新型生物传感器研制及应用于中药残留检测
- 批准号:82360857
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 192.88万 - 项目类别:
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 192.88万 - 项目类别:
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 192.88万 - 项目类别:
EGF Receptor Endocytosis: Mechanisms and Role in Signaling
EGF 受体内吞作用:机制及其在信号传导中的作用
- 批准号:
10552100 - 财政年份:2023
- 资助金额:
$ 192.88万 - 项目类别: