Identification of Trauma-related Features in EHR Data for Patients with Psychosis and Mood Disorders
精神病和情绪障碍患者 EHR 数据中创伤相关特征的识别
基本信息
- 批准号:10296954
- 负责人:
- 金额:$ 22.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAdultArchitectureBrainChild AbuseChild Sexual AbuseClinicalClinical TrialsCollaborationsCommunitiesComplexDataData ElementDatabasesDevelopmentDiagnosticDimensionsElectronic Health RecordEventExposure toFemaleFrequenciesFutureGoldGuidelinesHealth Care CostsHeterogeneityHospitalsHumanIndividualInstitutionJointsKnowledgeLabelLifeLinkMachine LearningManualsMassachusettsMediationMental disordersMethodsModelingMood DisordersNamesNatural Language ProcessingOutcomePatientsPhenotypePopulationPrevalencePsychopathologyPsychosesPsychotic DisordersPsychotic Mood DisordersRecording of previous eventsRelapseResearchResearch Domain CriteriaResearch PersonnelResistanceResourcesRiskSocietiesSourceStandardizationSubgroupSubstance abuse problemSuicideSupervisionSymptomsTestingTherapeutic InterventionTimeTrainingTraumaTreatment outcomeValidationbaseclinical heterogeneityclinical investigationclinically significantcomputing resourcescost effectivedata modelingdata registrydata reusedata standardsdesigndisabilityemotional abuseexperiencehospital readmissioninsightmachine learning methodmalenatural languagenew therapeutic targetpatient health informationpatient stratificationpediatric traumapersonalized medicinephysical abuserepositorysevere psychiatric disorderstructured datatherapy resistanttooltreatment planningunstructured data
项目摘要
Project Summary
Psychotic and mood disorders represent a major driver of disability as well as health care cost. There is
considerable clinical heterogeneity among patients. Developing clinically implementable machine learning (ML)
tools to enable accurate patient stratification is critically important in order to augment effective personalized
treatment plans. Among the factors contributing to heterogeneity, childhood trauma is an under-recognized
source. The prevalence of childhood trauma is significant in adults with psychiatric disorders. Robust evidence
shows that: i) individuals exposed to childhood abuse are 2-3 times more likely to develop a psychiatric disorder
later in life, particularly psychosis; ii) childhood traumas impact critical windows of brain development and can
trigger the onset of psychosis; and iii) among patients with psychotic and mood disorders, childhood trauma
influences psychopathology, leading to more severe symptoms, poorer long-term outcomes (longer and higher
rate of relapses or rehospitalization), associated with substance abuse, and are often treatment resistant and
function poorly in society. Although evidence clearly indicates that childhood trauma contributes to psychiatric
risk and poor treatment outcomes, large-scale computational approaches to stratify subpopulations, extract
trauma features (e.g., frequency, type), and examine the links or the impact of trauma features on
psychopathology and treatment outcome have yet to be developed. We propose to create gold standard
annotations from Electronic health records (EHRs) and to leverage natural language processing (NLP) and ML
methods to develop a standardized re-useable data model for automatically extracting trauma-related features,
complex concepts, and symptom dimensions from EHRs. We will train and evaluate a semi-supervised NLP
model, which is built as a joint sequence model that can both identify named entities as well as extract the
relations between them. We will apply multiple strategies to validate the robustness of our model. Our proposed
NLP model is essentially a “computational version of a chart review” tool, designed to mimic human chart review
but performed automatically with the ability to scale. We will use this model to stratify psychosis subgroups (with
or without childhood trauma history) and to correlate among the extracted features with important clinical
outcome variables. Importantly, the annotation guidelines, corpus, and the data model developed by us will be
valuable resources to researchers in the field. The study builds on existing collaborations between a team
experienced in psychiatric phenotyping and application of EHRs, and a team active in developing and applying
emerging methods in ML to natural language data. The model architecture developed in this application will lay
the groundwork for a future clinical trial application.
项目摘要
精神病和情绪障碍代表了残疾和医疗保健费用的主要驱动力。有
患者之间的临床异质性很大。开发可实施的机器学习(ML)
为了增强有效的个性化,以实现准确的患者分层的工具至关重要
治疗计划。在导致异质性的因素中,童年创伤是一种不认可的
来源。儿童期创伤的患病率在精神疾病的成年人中很重要。强大的证据
表明:i)受到儿童虐待的人患有精神障碍的可能性高2-3倍
在生活中,尤其是精神病; ii)儿童创伤会影响大脑发育的关键窗户,并且可以
触发精神病的发作; iii)在精神病和情绪障碍的患者中,儿童创伤
影响心理病理学,导致更严重的症状,长期结局较差(越来越高)
继电器速率或重新住院的速率),与药物滥用相关,通常是耐药性和
尽管证据清楚地表明,童年创伤有助于精神病学
风险和不良治疗结果,大规模计算方法来分层亚群,提取
创伤特征(例如频率,类型),并检查创伤特征的链接或影响
精神病理学和治疗结果尚未开发。我们建议创建黄金标准
电子健康记录(EHR)的注释并利用自然语言处理(NLP)和ML
开发标准化可重复使用的数据模型的方法,用于自动提取与创伤相关的功能,
EHR的复杂概念和症状维度。我们将训练和评估半监督的NLP
模型,该模型是作为一个联合序列模型构建的,既可以识别指定的实体,又可以提取
他们之间的关系。我们将采用多种策略来验证模型的鲁棒性。我们提出的
NLP模型本质上是“图表审查的计算版本”工具,旨在模仿人类图表审查
但以扩展能力自动执行。我们将使用此模型对精神病亚组进行分层(与
或没有童年创伤病史)并在提取的特征之间与重要的临床相关
结果变量。重要的是,我们开发的注释指南,语料库和数据模型将是
对该领域的研究人员有价值的资源。该研究以团队之间的现有合作为基础
在EHR的精神病表型和应用中经验丰富,以及一个积极开发和应用的团队
ML的新兴方法与自然语言数据。本应用程序中开发的模型架构将是
未来临床试验申请的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mei-Hua Hall其他文献
Mei-Hua Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mei-Hua Hall', 18)}}的其他基金
Modeling Temporality with Natural Language Processing to Predict Readmission Risk of Patients with Psychosis
使用自然语言处理对时序进行建模以预测精神病患者的再入院风险
- 批准号:
10445583 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别:
Modeling Temporality with Natural Language Processing to Predict Readmission Risk of Patients with Psychosis
使用自然语言处理对时序进行建模以预测精神病患者的再入院风险
- 批准号:
10669207 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别:
Identification of Trauma-related Features in EHR Data for Patients with Psychosis and Mood Disorders
精神病和情绪障碍患者 EHR 数据中创伤相关特征的识别
- 批准号:
10427433 - 财政年份:2021
- 资助金额:
$ 22.06万 - 项目类别:
Neurobiological Markers as Predictors of Later Functional Outcome in First Episode Psychosis
神经生物学标记物作为首发精神病后期功能结果的预测因子
- 批准号:
10376420 - 财政年份:2020
- 资助金额:
$ 22.06万 - 项目类别:
Functional Characterization of Risk Variants for Psychotic Illness in the GWAS Er
GWAS Er 中精神疾病风险变异的功能特征
- 批准号:
8078853 - 财政年份:2010
- 资助金额:
$ 22.06万 - 项目类别:
Functional Characterization of Risk Variants for Psychotic Illness in the GWAS Er
GWAS Er 中精神疾病风险变异的功能特征
- 批准号:
8641415 - 财政年份:2010
- 资助金额:
$ 22.06万 - 项目类别:
Functional Characterization of Risk Variants for Psychotic Illness in the GWAS Er
GWAS Er 中精神疾病风险变异的功能特征
- 批准号:
8279387 - 财政年份:2010
- 资助金额:
$ 22.06万 - 项目类别:
Functional Characterization of Risk Variants for Psychotic Illness in the GWAS Er
GWAS Er 中精神疾病风险变异的功能特征
- 批准号:
7892862 - 财政年份:2010
- 资助金额:
$ 22.06万 - 项目类别:
Functional Characterization of Risk Genes for Psychotic Illness in the GWAS Era
GWAS 时代精神疾病风险基因的功能表征
- 批准号:
8444577 - 财政年份:2010
- 资助金额:
$ 22.06万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Validation of a Virtual Still Face Procedure and Deep Learning Algorithms to Assess Infant Emotion Regulation and Infant-Caregiver Interactions in the Wild
验证虚拟静脸程序和深度学习算法,以评估野外婴儿情绪调节和婴儿与护理人员的互动
- 批准号:
10777825 - 财政年份:2023
- 资助金额:
$ 22.06万 - 项目类别:
Grounding models of category learning in the visual experiences of young children
幼儿视觉体验中类别学习的基础模型
- 批准号:
10704062 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别:
Grounding models of category learning in the visual experiences of young children
幼儿视觉体验中类别学习的基础模型
- 批准号:
10428182 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别:
Augmem: A Novel Digital Cognitive Assessment for the Early Detection of Alzheimer's Disease
Augmem:一种用于早期检测阿尔茨海默病的新型数字认知评估
- 批准号:
10688227 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别: