Grounding models of category learning in the visual experiences of young children
幼儿视觉体验中类别学习的基础模型
基本信息
- 批准号:10704062
- 负责人:
- 金额:$ 10.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-16 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAdultAgeAppleArchitectureAwardBehavioralBlindnessCanis familiarisCataract ExtractionCategoriesChildCognitiveComputer ModelsDataData SetDevelopmentDietEducational MaterialsEducational workshopEnvironmentExclusionExhibitsFoundationsGoalsInfantInterventionKnowledgeLabelLabradorLanguage DelaysLanguage DevelopmentLearningLifeMachine LearningMeasuresMentorsModelingModernizationNeural Network SimulationOutputParentsPhasePomegranateReportingResearchResearch PersonnelRestRiskStreamSurveysTestingTimeTrainingVisualWorkautistic childrencognitive developmentcrowdsourcingdeep neural networkeffective interventionexperienceexperimental studyimprovedinsightlearning outcomelongitudinal datasetmodels and simulationneuralnovelpeerpredictive modelingsocialstatistical learningstatisticsvision sciencevisual learningwolvesword learning
项目摘要
PROJECT SUMMARY
Early word learning is a major developmental achievement that rests on a foundation of visual category
learning: to learn that the word “dog” refers to a category dog that includes chihuahuas and excludes wolves,
children must make an impressive visual generalization. However, deep neural networks—our best models of
category learning—are unable to learn from the same visual diet as children, limiting our ability to construct
mechanistic accounts of early category and word learning. While infants learn the categories that words refer
to while experiencing a few categories (e.g., spoons, cups) dramatically more often than others (and while
experiencing certain categories as drawings or illustrations), current models learn from uniform distributions of
categories where exemplars are photos taken from the adult perspective. The proposed work will overcome
these limitations and use deep neural networks to understand how children’s everyday visual experiences
interact with statistical learning mechanisms to yield the category representations that support early word
learning. In Aim 1 (K99 phase), I will determine how variability in children’s visual experiences relates to early
word learning outcomes. To do so, I will collect a representative dataset of the categories in the infant view
using a parent-report measure and photographs taken from the infant perspective, and determine whether
variance in visual experience with different categories predicts which words are learned earlier in development.
In Aim 2 (K99/R00 phase) I will evaluate how well current models and infants learn from diverse sets of
realistic visual inputs using looking-time experiments and model simulations, evaluating whether networks with
more neurally plausible architectures are better predictors of infant learning. In Aim 3 (R00 phase), I will adapt
an existing deep neural network for infant categorization. To do so, I will build output layers on top of a
state-of-the-art unsupervised model of object segmentation to identify the categories in the infant view and to
make principled generalizations from frequently experienced to infrequently experienced but similar
categories—much like young children in early development. The empirical findings and resulting computational
model will provide insight into the relevant visual experiences for learning the categories that words refer to.
This understanding of how typically-developing children learn rapidly and efficiently in everyday environments
is essential to improve interventions for children struggling to learn the categories that words refer to, including
late talkers, children with ASD, and children recovering from blindness (e.g., after cataract surgery). This award
will build upon my strong background in visual category recognition and provide me with relevant training in
both early language acquisition and deep neural networks via interdisciplinary workshops, coursework, and the
scientific expertise of a team of mentors and consultants. This award will thus facilitate my transition to become
an independent investigator at the forefront of cognitive development, vision science, and machine learning.
项目摘要
早期单词学习是一个主要的发展成就,它依赖于视觉类别的基础
学习:了解“狗”一词是指包含奇瓦瓦人的类别狗,不包括狼,
儿童必须进行令人印象深刻的视觉概括。但是,深层神经网络 - 我们的最佳模型
类别学习 - 无法与儿童相同的视觉饮食学习,限制了我们的构建能力
早期类别和单词学习的机械叙述。虽然婴儿学习单词参考的类别
在经历几类(例如,汤匙,杯子)的同时,比其他类别更频繁地(而
当前模型从某些类别或插图中体验某些类别),从
从成人角度拍摄照片的示例的类别。拟议的工作将克服
这些局限性并使用深层神经网络来了解儿童每天的视觉体验
与统计学习机制互动以产生支持早期词的类别表示
学习。在AIM 1(K99阶段)中,我将确定儿童视觉体验的可变性与早期有关
单词学习结果。为此,我将收集婴儿视图中类别的代表性数据集
使用父母报告的测量和从婴儿角度拍摄的照片,并确定是否是否
视觉体验与不同类别的视觉体验的差异预测哪些单词在开发中较早学习。
在AIM 2(K99/R00阶段)中,我将评估当前的模型和婴儿从潜水员组中学习的程度
使用查看时间实验和模型模拟现实的视觉输入,评估是否与
更中性的建筑师是婴儿学习的更好预测指标。在AIM 3(R00阶段)中,我将适应
现有的婴儿类别的深层神经网络。为此,我将在
对象细分的最新无监督模型,以识别婴儿视图中的类别
从经常经历到经常经历但相似的经常经历到经常经验的概括
类别 - 像幼儿在早期发展中一样。经验发现和结果计算
模型将洞悉学习单词所指类别的相关视觉体验。
这种对典型开发儿童如何在每天环境中迅速有效地学习的理解
对于改善努力学习单词所指类别的儿童的干预措施至关重要,包括
最新的谈话者,有ASD的儿童以及从失明中康复的孩子(例如,在白内障手术后)。这个奖项
将基于我在视觉类别识别方面的强烈背景,并为我提供相关的培训
早期语言获取和深层神经网络都通过跨学科研讨会,课程和
导师和顾问团队的科学专业知识。因此,这个奖项将有助于我的过渡
在认知发展,视觉科学和机器学习的最前沿的独立研究者。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parallel developmental changes in children's production and recognition of line drawings of visual concepts.
儿童对视觉概念线条图的制作和识别的平行发展变化。
- DOI:10.1038/s41467-023-44529-9
- 发表时间:2024
- 期刊:
- 影响因子:16.6
- 作者:Long,Bria;Fan,JudithE;Huey,Holly;Chai,Zixian;Frank,MichaelC
- 通讯作者:Frank,MichaelC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bria Long其他文献
Bria Long的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bria Long', 18)}}的其他基金
Grounding models of category learning in the visual experiences of young children
幼儿视觉体验中类别学习的基础模型
- 批准号:
10428182 - 财政年份:2022
- 资助金额:
$ 10.54万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Social Connectedness and Health among Gender Minority People of Color
性别少数有色人种的社会联系和健康
- 批准号:
10650066 - 财政年份:2023
- 资助金额:
$ 10.54万 - 项目类别:
Low-income mothers' and fathers' parenting practices and toddlers' self-regulation
低收入父母的养育方式和幼儿的自我调节
- 批准号:
10742570 - 财政年份:2023
- 资助金额:
$ 10.54万 - 项目类别:
Integrated Treatment for Enhancing Growth in Recovery during Adolescence (InTEGRA)
促进青春期恢复生长的综合治疗 (InTEGRA)
- 批准号:
10680616 - 财政年份:2023
- 资助金额:
$ 10.54万 - 项目类别:
Sex Differences in Psychosocial and Neurocognitive Outcomes in Adults with Moderate to Complex Congenital Heart Disease
患有中度至复杂先天性心脏病的成人心理社会和神经认知结果的性别差异
- 批准号:
10825104 - 财政年份:2023
- 资助金额:
$ 10.54万 - 项目类别:
Neurocognitive Mechanisms of Positive Intervention Response in Reading Disability
阅读障碍积极干预反应的神经认知机制
- 批准号:
10747218 - 财政年份:2023
- 资助金额:
$ 10.54万 - 项目类别: