Discovering Network-Based Drivers of Single-Cell Transcriptional State in Tumor Immune Microenvironment to Reveal Immuno-Therapeutic Targets and Treatment Synergies

发现肿瘤免疫微环境中基于网络的单细胞转录状态驱动因素,以揭示免疫治疗靶点和治疗协同作用

基本信息

项目摘要

Project Summary/Abstract: Solid tumors consist not only of tumor cells, but also of immune cell types infiltrating the tumor micro- environment. Traditional approaches to cancer therapy have focused on killing tumor cells directly, but recent immune checkpoint inhibitor therapies have instead aimed to activate anti-tumor immune cells in the tissue. Immunotherapy has been transformative in clinical oncology over the past several years, but biomarkers of response are limited and effect of treatment on tumor micro-environment is incompletely understood. This has motivated efforts by Drake lab and others to better profile immune cell types in tumors under various treatment conditions, aiming to reveal novel therapy targets and identify improved predictors of treatment response. Our group has considerable experience applying high-throughput single-cell RNA sequencing (scRNA-Seq) to profile tumor micro-environment with full transcriptional resolution at the level of individual cells. We hypothesize that profiling the tumor microenvironment at single-cell level and applying an advanced network-based analysis pipeline to treatment-naïve and immunotherapy-treated tumors will improve characterization of the transcriptional program in tumor-infiltrating immune cell types, their association with outcome, and their clinically relevant interactions with tumor cells. Aim 1) Despite high resolution, scRNA-Seq data are typically sparse, with a minority of genes detected in any given cell. We aim to develop a powerful set of tools originating in the Califano Lab for network-based inference of regulatory protein activity in single-cell data, mitigating gene expression dropout and providing a scalable pipeline for inference of cell populations, tumor-immune interactions, and regulatory proteins differentially activated in distinct cell states. We validate this pipeline by comparison to markers concurrently profiled by flow cytometry in a dataset of clear cell renal carcinoma (ccRCC) patients. Aim 2) We will specifically leverage our novel analysis pipeline to interrogate drivers of tumor-infiltrating regulatory T-cells, an immunosuppressive population induced by multiple conventional treatment modalities, including androgen deprivation therapy in prostate cancer. We will validate predicted tumor-infiltration drivers by CRISPR knockout screen and apply an advanced transcriptional perturbation screen to identify drugs which invert the tumor-specific Treg signature. These are expected to serve as prime candidates for future combination immunotherapy studies. Aim 3) We will identify changes in micro-environment induced by immunotherapy in responders and non-responders across two clinical trials of immunotherapy plus androgen deprivation in prostate cancer and one trial of anti-PD1 plus anti-IL1b in ccRCC, identifying potentially novel therapeutic targets. In addition, we will apply our newly developed analytic pipeline to published scRNA-Seq datasets to identify predictors of treatment response in melanoma. With joint guidance from experienced mentors in Immunotherapy and Computational Systems Biology in the setting of Columbia University Medical Center, this project will prepare the trainee for a career as a physician-scientist with a unique background in translational bioinformatics research.
项目摘要/摘要: 实体瘤不仅由肿瘤细胞组成,而且由免疫小球类型组成 环境。传统的癌症治疗方法集中于直接杀死肿瘤细胞,但最近 免疫检查点抑制剂疗法旨在激活组织中的抗肿瘤免疫细胞。 在过去的几年中,免疫疗法在临床肿瘤学方面一直具有变化 反应有限,治疗对肿瘤微环境的影响尚不完全了解。这就是 Drake Lab和其他人在各种治疗下的肿瘤中的免疫细胞类型中的动机努力 条件,旨在揭示新的治疗靶标并确定治疗反应的预测指标。我们的 小组考虑了应用高通量单细胞RNA测序(SCRNA-SEQ)的经验 在单个细胞水平上具有完全转录分辨率的肿瘤微环境。我们假设这一点 在单细胞水平上分析肿瘤微环境并应用基于高级网络的分析 未经治疗和免疫治疗治疗的肿瘤的管道将改善 肿瘤浸入免疫细胞类型的转录程序,与结果的关联及其临床 与肿瘤细胞的相关相互作用。 AIM 1)尽管分辨率很高,但SCRNA-SEQ数据通常很少,有 在任何给定细胞中检测到的少数基因。我们旨在开发一套起源于加利福尼亚州的强大工具 实验室用于基于网络的单细胞数据中调节蛋白活性的推断,减轻基因表达 辍学并提供可扩展的管道来推断细胞群体,肿瘤免疫相互作用和 调节蛋白在不同的细胞状态下激活不同。我们通过相比验证该管道 在清晰细胞肾癌(CCRCC)患者数据集中流式细胞术同时介绍了标记。目的 2)我们将专门利用新的分析管道来询问肿瘤渗透调节的驱动因素 T细胞是由多种常规治疗方式引起的免疫抑制人群,包括 前列腺癌中的雄激素剥夺疗法。我们将验证CRISPR的预测肿瘤浸润驱动器 敲除屏幕并应用高级转录扰动屏幕以识别颠倒的药物 肿瘤特异性特雷格签名。预计这些将成为未来组合的主要候选人 免疫疗法研究。目标3)我们将确定免疫疗法引起的微环境的变化 在两项免疫疗法的临床试验中,反应者和无反应者以及前列腺中的雄激素剥夺 CCRC中的抗PD1和抗IL1b的癌症和一项试验,确定了潜在的新型治疗靶标。在 此外,我们将将新开发的分析管道应用于已发布的SCRNA-SEQ数据集以识别 黑色素瘤治疗反应的预测指标。在经验丰富的免疫疗法的共同指导下 和计算系统生物学在哥伦比亚大学医学中心的环境中,该项目将准备 作为身体科学家的职业学员,具有转化生物信息学研究的独特背景。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksandar Zoran Obradovic其他文献

Aleksandar Zoran Obradovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksandar Zoran Obradovic', 18)}}的其他基金

Discovering Network-Based Drivers of Single-Cell Transcriptional State in Tumor Immune Microenvironment to Reveal Immuno-Therapeutic Targets and Treatment Synergies
发现肿瘤免疫微环境中基于网络的单细胞转录状态驱动因素,以揭示免疫治疗靶点和治疗协同作用
  • 批准号:
    10376033
  • 财政年份:
    2021
  • 资助金额:
    $ 4.6万
  • 项目类别:

相似国自然基金

面向掌纹识别的安全与隐私保护理论和方法研究
  • 批准号:
    62376211
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
微观市场均衡视角下中国长期护理保险试点的福利分析与政策评估
  • 批准号:
    72304093
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向康复护理机器人的人机信任度评估方法与任务影响机制研究
  • 批准号:
    62306195
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于生命质量的癌症患者心理行为与护理干预
  • 批准号:
    72381240026
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    国际(地区)合作与交流项目
天然水体中药品和个人护理品间接光降解产物预测模型的构建和应用
  • 批准号:
    42307496
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Predicting Antidepressant Response Early in Treatment Using Neuroimaging To Assist Clinicians With Treatment Planning
使用神经影像学在治疗早期预测抗抑郁反应,以协助临床医生制定治疗计划
  • 批准号:
    10464662
  • 财政年份:
    2022
  • 资助金额:
    $ 4.6万
  • 项目类别:
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
  • 批准号:
    10602003
  • 财政年份:
    2022
  • 资助金额:
    $ 4.6万
  • 项目类别:
Discovering Network-Based Drivers of Single-Cell Transcriptional State in Tumor Immune Microenvironment to Reveal Immuno-Therapeutic Targets and Treatment Synergies
发现肿瘤免疫微环境中基于网络的单细胞转录状态驱动因素,以揭示免疫治疗靶点和治疗协同作用
  • 批准号:
    10376033
  • 财政年份:
    2021
  • 资助金额:
    $ 4.6万
  • 项目类别:
Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测牙周问题 (RADMAP)
  • 批准号:
    10285226
  • 财政年份:
    2021
  • 资助金额:
    $ 4.6万
  • 项目类别:
Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer
多参数灌注 MRI 用于脑癌治疗反应评估
  • 批准号:
    9927886
  • 财政年份:
    2020
  • 资助金额:
    $ 4.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了