Discovering Network-Based Drivers of Single-Cell Transcriptional State in Tumor Immune Microenvironment to Reveal Immuno-Therapeutic Targets and Treatment Synergies
发现肿瘤免疫微环境中基于网络的单细胞转录状态驱动因素,以揭示免疫治疗靶点和治疗协同作用
基本信息
- 批准号:10376033
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAftercareAlgorithmic AnalysisAlgorithmsAndrogensBindingBioinformaticsCD4 Positive T LymphocytesCarcinomaCell CountCell surfaceCellsCharacteristicsClinicalClinical OncologyClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsCombination immunotherapyCombined Modality TherapyConventional (Clear Cell) Renal Cell CarcinomaDataData SetDatabasesDevelopmentDropoutEvaluationFDA approvedFlow CytometryFutureGene ExpressionGene Expression ProfileGenesGenetic TranscriptionHumanImmuneImmune checkpoint inhibitorImmunotherapeutic agentImmunotherapyIndividualInfiltrationInflammatoryJointsKnock-outLigandsMalignant NeoplasmsMalignant neoplasm of prostateManualsMentorsMiningMinorityModalityNetwork-basedOutcomePatientsPeripheralPharmaceutical PreparationsPhenotypePhysiciansPopulationPrediction of Response to TherapyProstate AdenocarcinomaProteinsProteomicsPublishingRegulatory T-LymphocyteRenal Cell CarcinomaRenal carcinomaResearchResistanceResolutionReverse engineeringSamplingScientistSolid NeoplasmSystems BiologyT-LymphocyteTh1 CellsTherapeuticTissue-Specific Gene ExpressionTissuesTranslatingTumor Cell LineTumor-infiltrating immune cellsUp-RegulationValidationanalysis pipelineandrogen deprivation therapyanti-CTLA4anti-PD-1basecancer immunotherapycancer therapycareercell typecheckpoint therapyclinically relevantconventional therapycytotoxic CD8 T cellsdensitydeprivationdruggable targetexperiencefollow-upgenetic regulatory proteinimmunotherapy clinical trialsimprovedinhibitorknockout genemelanomamouse modelneoplastic cellnew therapeutic targetnovelpredicting responseprogramsprotein biomarkersreceptorresistance mechanismresponders and non-respondersresponseresponse biomarkerscreeningsingle cell analysissingle-cell RNA sequencingsynergismtargeted treatmenttherapy developmenttherapy resistanttooltranscription regulatory networktranscriptome sequencingtreatment effecttumortumor heterogeneitytumor microenvironmenttumor progressiontumor-immune system interactions
项目摘要
Project Summary/Abstract:
Solid tumors consist not only of tumor cells, but also of immune cell types infiltrating the tumor micro-
environment. Traditional approaches to cancer therapy have focused on killing tumor cells directly, but recent
immune checkpoint inhibitor therapies have instead aimed to activate anti-tumor immune cells in the tissue.
Immunotherapy has been transformative in clinical oncology over the past several years, but biomarkers of
response are limited and effect of treatment on tumor micro-environment is incompletely understood. This has
motivated efforts by Drake lab and others to better profile immune cell types in tumors under various treatment
conditions, aiming to reveal novel therapy targets and identify improved predictors of treatment response. Our
group has considerable experience applying high-throughput single-cell RNA sequencing (scRNA-Seq) to profile
tumor micro-environment with full transcriptional resolution at the level of individual cells. We hypothesize that
profiling the tumor microenvironment at single-cell level and applying an advanced network-based analysis
pipeline to treatment-naïve and immunotherapy-treated tumors will improve characterization of the
transcriptional program in tumor-infiltrating immune cell types, their association with outcome, and their clinically
relevant interactions with tumor cells. Aim 1) Despite high resolution, scRNA-Seq data are typically sparse, with
a minority of genes detected in any given cell. We aim to develop a powerful set of tools originating in the Califano
Lab for network-based inference of regulatory protein activity in single-cell data, mitigating gene expression
dropout and providing a scalable pipeline for inference of cell populations, tumor-immune interactions, and
regulatory proteins differentially activated in distinct cell states. We validate this pipeline by comparison to
markers concurrently profiled by flow cytometry in a dataset of clear cell renal carcinoma (ccRCC) patients. Aim
2) We will specifically leverage our novel analysis pipeline to interrogate drivers of tumor-infiltrating regulatory
T-cells, an immunosuppressive population induced by multiple conventional treatment modalities, including
androgen deprivation therapy in prostate cancer. We will validate predicted tumor-infiltration drivers by CRISPR
knockout screen and apply an advanced transcriptional perturbation screen to identify drugs which invert the
tumor-specific Treg signature. These are expected to serve as prime candidates for future combination
immunotherapy studies. Aim 3) We will identify changes in micro-environment induced by immunotherapy in
responders and non-responders across two clinical trials of immunotherapy plus androgen deprivation in prostate
cancer and one trial of anti-PD1 plus anti-IL1b in ccRCC, identifying potentially novel therapeutic targets. In
addition, we will apply our newly developed analytic pipeline to published scRNA-Seq datasets to identify
predictors of treatment response in melanoma. With joint guidance from experienced mentors in Immunotherapy
and Computational Systems Biology in the setting of Columbia University Medical Center, this project will prepare
the trainee for a career as a physician-scientist with a unique background in translational bioinformatics research.
项目摘要/摘要:
实体瘤不仅由肿瘤细胞组成,还由浸润肿瘤微结构的免疫细胞类型组成。
传统的癌症治疗方法主要集中于直接杀死肿瘤细胞,但近年来
相反,免疫检查点抑制剂疗法的目的是激活组织中的抗肿瘤免疫细胞。
在过去的几年里,免疫疗法在临床肿瘤学中发生了变革,但免疫疗法的生物标志物
反应有限,治疗对肿瘤微环境的影响尚不完全清楚。
受到 Drake 实验室和其他人的激励,以更好地分析各种治疗下肿瘤中的免疫细胞类型
条件,旨在揭示新的治疗目标并确定治疗反应的改进预测因子。
团队在应用高通量单细胞 RNA 测序 (scRNA-Seq) 进行分析方面拥有丰富的经验
在单个细胞水平上具有完全转录分辨率的肿瘤微环境。
在单细胞水平上分析肿瘤微环境并应用先进的基于网络的分析
未经治疗和免疫疗法治疗的肿瘤的管道将改善肿瘤的表征
肿瘤浸润免疫细胞类型中的转录程序、它们与结果的关联以及它们的临床
目标 1) 尽管分辨率很高,但 scRNA-Seq 数据通常很稀疏,并且
我们的目标是开发一套源自 Califano 的强大工具。
基于网络推断单细胞数据中调节蛋白活性、减轻基因表达的实验室
退出并提供可扩展的管道来推断细胞群、肿瘤免疫相互作用以及
我们通过比较来验证该管道在不同细胞状态下的不同激活。
通过流式细胞术在透明细胞肾癌 (ccRCC) 患者数据集中同时分析标记物。
2)我们将专门利用我们新颖的分析管道来询问肿瘤浸润监管的驱动因素
T 细胞,由多种常规治疗方式诱导的免疫抑制群体,包括
我们将通过 CRISPR 验证预测的肿瘤浸润驱动因素。
敲除筛选并应用先进的转录扰动筛选来识别逆转转录的药物
肿瘤特异性 Treg 特征有望成为未来组合的主要候选者。
目标 3)我们将确定免疫疗法引起的微环境变化。
前列腺免疫疗法加雄激素剥夺的两项临床试验中的应答者和非应答者
癌症和 ccRCC 中抗 PD1 加抗 IL1b 的一项试验,确定了潜在的新治疗靶点。
此外,我们将把我们新开发的分析流程应用于已发布的 scRNA-Seq 数据集,以识别
在免疫疗法经验丰富的导师的共同指导下,黑色素瘤治疗反应的预测因素。
和计算系统生物学在哥伦比亚大学医学中心的背景下,该项目将准备
具有转化生物信息学研究独特背景的医师科学家职业的实习生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aleksandar Zoran Obradovic其他文献
Aleksandar Zoran Obradovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aleksandar Zoran Obradovic', 18)}}的其他基金
Discovering Network-Based Drivers of Single-Cell Transcriptional State in Tumor Immune Microenvironment to Reveal Immuno-Therapeutic Targets and Treatment Synergies
发现肿瘤免疫微环境中基于网络的单细胞转录状态驱动因素,以揭示免疫治疗靶点和治疗协同作用
- 批准号:
10231345 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
相似海外基金
Predicting Antidepressant Response Early in Treatment Using Neuroimaging To Assist Clinicians With Treatment Planning
使用神经影像学在治疗早期预测抗抑郁反应,以协助临床医生制定治疗计划
- 批准号:
10464662 - 财政年份:2022
- 资助金额:
$ 5.18万 - 项目类别:
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
- 批准号:
10602003 - 财政年份:2022
- 资助金额:
$ 5.18万 - 项目类别:
Discovering Network-Based Drivers of Single-Cell Transcriptional State in Tumor Immune Microenvironment to Reveal Immuno-Therapeutic Targets and Treatment Synergies
发现肿瘤免疫微环境中基于网络的单细胞转录状态驱动因素,以揭示免疫治疗靶点和治疗协同作用
- 批准号:
10231345 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测牙周问题 (RADMAP)
- 批准号:
10285226 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer
多参数灌注 MRI 用于脑癌治疗反应评估
- 批准号:
9927886 - 财政年份:2020
- 资助金额:
$ 5.18万 - 项目类别: