Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
基本信息
- 批准号:10207884
- 负责人:
- 金额:$ 69.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-10 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAnimal ModelAntioxidantsArteriesBiochemicalBiological AvailabilityBlood VesselsBlood flowCaliberCardiovascular DiseasesCardiovascular systemCause of DeathCell membraneCharacteristicsCleaved cellClinical TrialsDataDevelopmentDiabetes MellitusDisintegrinsEndothelial CellsEndotheliumEnzymesGlycocalyxGlycoproteinsGoalsGoldHomeostasisHumanImpairmentInflammatoryLeadMeasuresMediatingMembraneMetalloproteasesMethodologyMorbidity - disease rateMusNeuraminidaseNitric OxideNon-Insulin-Dependent Diabetes MellitusOxidative StressPatientsPharmacologyPhosphatidylserinesPhysiologicalPlasmaPlayProcessProductionProteoglycanPublishingReactive Oxygen SpeciesResearchRisk FactorsRoleSialic AcidsSignal TransductionStructureTestingTherapeuticVasodilationVasodilator AgentsWorkbaseendothelial dysfunctionexperimental studygenetic manipulationhuman subjectimprovedinnovationloss of functionmechanical forcemechanotransductionmortalitynew therapeutic targetnovelpreventresponseshear stress
项目摘要
PROJECT SUMMARY/ABSTRACT
Endothelial dysfunction is causally implicated in the development of cardiovascular disease (CVD), the main
cause of death in patients with type 2 diabetes (T2D). The endothelium regulates arterial diameter and
vascular homeostasis via the production of a myriad of vasoactive substances including nitric oxide (NO). NO
is a powerful vasodilator produced in response to blood flow-induced shear stress, which is detected by
mechanosensitive endothelial luminal structures. The glycocalyx is such a mechanosensor. It consists of a
mesh of interwoven glycoproteins and proteoglycans that, when disturbed by shear stress, converts
mechanical forces into biochemical signals. The appropriate result of this process, known as
mechanotransduction, is endothelium-dependent flow-mediated dilation (FMD), which is considered the gold-
standard physiological measure of endothelial function. Notably, impaired FMD is highly prevalent in T2D and
also represents a critical component of the mechanisms that lead to CVD. However, despite the major role
that reduced FMD plays in T2D-associated CVD development, the mechanisms that lead to this abnormal
response are not completely known. In addition, there are currently no specific therapeutic means to alleviate
impaired FMD. A central goal of this proposal is to decipher the mechanisms underlying the impairment of
FMD in T2D and discover new therapeutic targets to improve it. Based on our prior work and most recent and
exciting preliminary data, we propose the novel hypothesis that increased plasma neuraminidase activity
degrades glycocalyx structures via activation of ADAM17 (a disintegrin and metalloproteinase-17) and
promotes endothelial dysfunction in T2D. We will test our innovative hypothesis with gain- and loss-of-function
pharmacological and genetic-manipulation experiments in human cultured endothelial cells and isolated
arteries, in animal models of neuraminidase ablation and T2D, and in patients with T2D. Specifically, in Aim 1,
using cultured endothelial cells and isolated arteries from humans, we will determine the mechanisms by which
neuraminidase activity increases endothelial ADAM17 activation and impairs FMD. Subsequently, in Aim 2,
we will determine the effects of neuraminidase inhibition on endothelial function in animal models and patients
with T2D. We hypothesize that neuraminidase inhibition in T2D mice or humans improves FMD and overall
vascular function. Our team is poised to move cardiovascular and diabetes research forward with a project
that will exert a sustained, powerful impact across a number of levels of inquiry that are novel conceptually,
mechanistically, methodologically, and therapeutically. Indeed, targeting neuraminidase activity holds
extraordinary promise for correcting endothelial dysfunction in T2D and ultimately preventing/treating T2D-
associated CVD.
项目摘要/摘要
内皮功能障碍与心血管疾病(CVD)的发展有关
2型糖尿病患者(T2D)的死亡原因。内皮调节动脉直径和
血管稳态通过产生多种血管活性物质,包括一氧化氮(NO)。不
是一种功能强大的血管扩张剂,以响应血流引起的剪切应力,这是由
机械敏感的内皮管腔结构。糖蛋白是这样的机械传感器。它由
交织的糖蛋白和蛋白聚糖的网格,当剪切应力干扰时,会转换
机械力成生化信号。此过程的适当结果,称为
机械转导,是内皮依赖性流介导的扩张(FMD),被认为是金 -
内皮功能的标准生理测量。值得注意的是,FMD受损在T2D中很普遍,并且
还代表导致CVD的机制的关键组成部分。但是,尽管有主要角色
这降低了FMD在T2D相关的CVD发展中的作用,导致这种异常的机制
响应并不完全知道。此外,目前没有具体的治疗方法来减轻
FMD受损。该提议的核心目标是破译损害损害的机制
T2D中的FMD并发现新的治疗靶标以改进它。根据我们先前的工作以及最近的工作
令人兴奋的初步数据,我们提出了增加血浆神经氨酸酶活性的新假设
通过激活ADAM17(崩解蛋白和金属蛋白酶17)和
促进T2D中的内皮功能障碍。我们将通过功能丧失和功能丧失来检验我们的创新假设
在人培养的内皮细胞中进行的药理和遗传操作实验,并分离
动脉,在神经酶消融和T2D的动物模型中,以及T2D患者。具体来说,在AIM 1中,
使用人类培养的内皮细胞和孤立的动脉,我们将确定该机制
神经氨酸酶活性增加了内皮ADAM17激活并损害FMD。随后,在AIM 2中
我们将确定神经氨酸酶抑制对动物模型和患者内皮功能的影响
与T2D。我们假设T2D小鼠或人类中的神经氨酸酶抑制作用可改善FMD和总体
血管功能。我们的团队准备将心血管和糖尿病研究转向一个项目
这将在许多概念上都是新颖的探究层面的持续,强大的影响,
机械,方法论和治疗。确实,靶向神经氨酸酶活性
在T2D中纠正内皮功能障碍的非凡承诺,并最终阻止/治疗T2D-
相关的CVD。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis A Martinez-Lemus其他文献
Luis A Martinez-Lemus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis A Martinez-Lemus', 18)}}的其他基金
Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
- 批准号:
10359775 - 财政年份:2021
- 资助金额:
$ 69.33万 - 项目类别:
Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
- 批准号:
10569599 - 财政年份:2021
- 资助金额:
$ 69.33万 - 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
- 批准号:
10642932 - 财政年份:2021
- 资助金额:
$ 69.33万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Redox stress resilience in aging skeletal muscle
衰老骨骼肌的氧化还原应激恢复能力
- 批准号:
10722970 - 财政年份:2023
- 资助金额:
$ 69.33万 - 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
$ 69.33万 - 项目类别:
Development and Preclinical Evaluation of Nanoformulations in Liver Fibrotic Mice
肝纤维化小鼠纳米制剂的开发和临床前评价
- 批准号:
10639037 - 财政年份:2023
- 资助金额:
$ 69.33万 - 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
- 批准号:
10642932 - 财政年份:2021
- 资助金额:
$ 69.33万 - 项目类别:
Membrane lipid peroxidation in pathogenesis of Alzheimer’s disease
膜脂质过氧化在阿尔茨海默病发病机制中的作用
- 批准号:
10615076 - 财政年份:2019
- 资助金额:
$ 69.33万 - 项目类别: