Mechanisms of Microvascular Remodeling Progression
微血管重塑进展机制
基本信息
- 批准号:9198801
- 负责人:
- 金额:$ 37.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAnimal ModelAnimalsArteriesBlood VesselsCaliberCardiovascular DiseasesCardiovascular systemCause of DeathCellsClinicalCytoskeletonDataDevelopmentDisease ManagementEarElastinEventExcisionExtracellular MatrixGelatinase AGoalsHypertensionIndividualInterventionKnowledgeLIM Domain Kinase 1LeadLifeMMP14 geneMatrix MetalloproteinasesMeasuresModificationMolecularMuscle CellsMyocardial InfarctionOutcomePatientsPeptidesPharmacologyPrevalenceProcessProductionProteinsPublic HealthPublicationsReportingResearchResistanceResistance ProcessRho-associated kinaseRiskSiteStimulusStress FibersStrokeStructureSubcellular structureTechniquesTechnologyTestingTherapeuticTissuesUnited StatesVascular Smooth MuscleVascular remodelingbasecofilincrosslinkinsightintravital microscopynormotensivenovel strategiespolymerizationpreventpublic health relevancetransglutaminase 2vasoconstriction
项目摘要
DESCRIPTION (provided by applicant): Vascular remodeling is an adaptive mechanism for long-term modification of vascular diameter. In hypertension, inward remodeling, that is, the structural reduction of the lumen diameter in resistance vessels, is associated with an increased risk for myocardial infarction and stroke. However, despite its prevalence and clinical importance, the mechanisms that control the inward remodeling process remain largely unknown. Our goal here is to identify mechanisms in the inward remodeling process of the resistance vasculature that may be intervened with novel strategies to prevent, stop or reverse the remodeling process, and consequently diminish the life-threatening cardiovascular events associated with it. Current publications and our own preliminary data indicate that tissue-type transglutaminase (TG2), LIM kinase (LIMK), and matrix metalloproteinase-2 (MMP2) within vascular smooth muscle cells (VSMC) are involved in the remodeling process. Therefore, as we and others have determined that inwardly remodeled resistance vessels have actin cytoskeletal structures that reduce their passive diameters and extracellular matrix (ECM) features characterized by a reduction in the number and size of fenestrae in the internal elastic lamina (IEL): Our hypothesis is that during the early stages of the inward remodeling process in resistance vessels, prolonged vasoconstriction leads to formation of permanent VSMC cytoskeletal structures via the intracellular activity of TG2 and LIM kinase, which in turn stimulate the production of MMP2 and the modification of the ECM, in particular the IEL. We will test our hypothesis in VSMC, isolated resistance arteries and a whole animal model of hypertension. Cells and tissues will come from animals, as well as from normotensive and hypertensive individuals. The expression and activity of the remodeling components tested in our hypotheses will be modulated using pharmacological and molecular means. Experimental outcomes will be measured using traditional and leading-edge techniques in protein and enzymatic activity analyses, as well as, atomic force, multiphoton, and long-term intravital microscopy. Our specific aims will test the hypotheses that: 1) Intracellular TG2 activates RhoA, Rho kinase and LIMK to phosphorylate and inactivate cofilin to favor formation of actin networks and stress-fibers, with TG2 further crosslinking actin structures to make them more persistent; and 2) that LIMK activates MMP14 and leads to expression/secretion of MMP2 from VSMC. Then MMP2 through its elastolytic actions generates elastin peptides that activate VSMC to produce more elastin. This new elastin is incorporated in the IEL and reduces the size and number of fenestrae in the IEL. We expect this study will provide new insights on how cytoskeletal and IEL structures of resistance arteries are modified in hypertension. This knowledge should have a positive impact on strategies for preventing and treating hypertension, and the management of diseases associated with vascular remodeling.
描述(由申请人提供):血管重塑是血管直径长期改变的适应性机制,在高血压中,向内重塑,即阻力血管管腔直径的结构性减小,与心肌风险增加相关。然而,尽管其普遍存在且具有临床重要性,但控制向内重塑过程的机制仍然很大程度上未知,我们的目标是确定抵抗脉管系统的向内重塑过程中的机制。可以通过新策略进行干预,以预防、停止或逆转重塑过程,从而减少与之相关的危及生命的心血管事件。 ) 和血管平滑肌细胞 (VSMC) 内的基质金属蛋白酶 2 (MMP2) 参与重塑过程。因此,我们和其他人已经确定,向内重塑的阻力血管具有肌动蛋白细胞骨架结构。减少其被动直径和细胞外基质(ECM)特征,其特征是内弹性层(IEL)中窗孔的数量和尺寸减少:我们的假设是,在阻力血管向内重塑过程的早期阶段,长时间的血管收缩通过 TG2 和 LIM 激酶的细胞内活性导致永久性 VSMC 细胞骨架结构的形成,进而刺激 MMP2 的产生和 ECM(特别是 IEL)的修饰。将在 VSMC 中检验我们的假设,分离的阻力动脉和高血压的整个动物模型将来自动物以及血压正常和高血压个体。我们的假设中测试的重塑成分的表达和活性将受到调节。使用药理学和分子手段。实验结果将使用蛋白质和酶活性分析中的传统和前沿技术以及原子力、多光子和长期活体显微镜进行测试。假设:1) 细胞内 TG2 激活 RhoA、Rho 激酶和 LIMK,使肌动蛋白丝切蛋白磷酸化和失活,从而有利于肌动蛋白网络和应力纤维的形成,TG2 进一步交联肌动蛋白结构,使其更加持久;2) LIMK 激活 MMP14;并导致 VSMC 表达/分泌 MMP2,然后 MMP2 通过其弹力分解作用产生弹性蛋白。这种新的弹性蛋白被纳入 IEL 中,并减少了 IEL 中窗孔的大小和数量,我们预计这项研究将为高血压中阻力动脉的细胞骨架和 IEL 结构的改变提供新的见解。这些知识应该对预防和治疗高血压的策略以及与血管重塑相关的疾病的管理产生积极影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis A Martinez-Lemus其他文献
Luis A Martinez-Lemus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis A Martinez-Lemus', 18)}}的其他基金
Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
- 批准号:
10359775 - 财政年份:2021
- 资助金额:
$ 37.78万 - 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
- 批准号:
10207884 - 财政年份:2021
- 资助金额:
$ 37.78万 - 项目类别:
Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
- 批准号:
10569599 - 财政年份:2021
- 资助金额:
$ 37.78万 - 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
- 批准号:
10642932 - 财政年份:2021
- 资助金额:
$ 37.78万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Develop and Assess mRNA Lipid Nanoparticle Vaccines Against Cryptococcosis
开发并评估针对隐球菌病的 mRNA 脂质纳米颗粒疫苗
- 批准号:
10616313 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
Chlamydia type III effectors affecting the host actin-based cytoskeleton
III 型衣原体效应子影响宿主肌动蛋白细胞骨架
- 批准号:
10632935 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
Brain derived extracellular vesicles-mediated neurotoxicity of deltamethrin
溴氰菊酯脑源性细胞外囊泡介导的神经毒性
- 批准号:
10679858 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
- 批准号:
10883872 - 财政年份:2023
- 资助金额:
$ 37.78万 - 项目类别: