Mechanisms of microvascular remodeling progression
微血管重塑进展机制
基本信息
- 批准号:8282837
- 负责人:
- 金额:$ 36.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAtomic Force MicroscopyBlood VesselsCalciumCaliberCardiovascular systemCell-Matrix JunctionCollagen Type ICytoskeletonDNA Sequence RearrangementEventExtracellular MatrixExtracellular Matrix DegradationFibronectinsFocal AdhesionsGoalsHealthHourHypertensionImageImaging TechniquesImmunohistochemistryIntegrinsLaboratoriesLengthLifeMatrix MetalloproteinasesMeasuresMechanicsMethodologyMicroscopyModelingModificationMolecularMonitorMonomeric GTP-Binding ProteinsMyocardial InfarctionPositioning AttributeProcessProductionReactive Oxygen SpeciesResearchResistanceRiskRoleSmooth Muscle MyocytesStimulusStrokeStructureTechniquesTestingTherapeutic procedureVascular Smooth MuscleVascular remodelingVasoconstrictor AgentsVasodilator Agentsarteriolecell behaviorfluorescence imagingin vitro Modelin vivoin vivo Modelinnovationintravital microscopymolecular imagingnovelnovel strategiespreventprophylacticpublic health relevanceresearch studyresponserhovasoconstriction
项目摘要
DESCRIPTION (provided by applicant): Vascular remodeling is an adaptive mechanism for long-term modification of vascular diameter. In hypertension, inward remodeling, that is, the structural reduction of the lumen diameter in resistance vessels, is associated with an increased risk for myocardial infarction and stroke. However, despite its association with life threatening cardiovascular events, little is known about the mechanisms that initiate and guide the progression of inward remodeling in the resistance microvessels. In this regard, we view the remodeling process as a continuum of events that culminate in the structurally altered vessel. Our singularly novel and provocative hypothesis is that sustained arteriolar vasoconstriction in response to prolonged humoral, and/or mechanical stimuli initiates remodeling mechanisms characterized by: 1) partial degradation (turnover) of the extracellular matrix (ECM) components of the vessel wall; 2) rearrangement of the vascular smooth muscle (VSM) cytoskeleton; and 3) repositioning of the VSM cellular attachments via processes that depend on the cellular production of reactive oxygen species (ROS). Using a highly innovative multiphoton imaging technique developed in our laboratories, we recently demonstrated that VSM cells in isolated arterioles re-lengthen and rapidly change position during prolonged vasoconstriction (a hallmark of hypertension) while the reduced arteriolar diameter is maintained. This phenomenon occurs in as little as four hours, and we propose is an early mechanism associated with inward remodeling. We further hypothesize that other mechanisms occur concurrently, including: 1) ROS-dependent activation of matrix metalloproteinases (MMP) to degrade the ECM; 2) ROS-dependent modulation of the small G protein Rho to induce calcium sensitization and remodel the VSM cytoskeleton; and 3) ROS-dependent modulation of integrin-dependent VSM cell attachments. We will test our hypotheses in three in vivo and two in vitro models using state of the art imaging and molecular approaches. With intravital microscopy we will monitor vascular remodeling in vivo, and with multiphoton microscopy, we will determine VSM cell behavior and ECM changes in isolated arterioles. With atomic force microscopy (AFM) and fluorescence imaging we will apply discrete forces to freshly isolated VSM cells and monitor focal adhesion (cellular attachments) and cytoskeletal remodeling. These methodologies combined with molecular and pharmacological techniques will be used in our Specific Aims to determine the role of ROS, MMPs, Rho, and integrins on remodeling. These approaches will provide a powerful strategy for testing our hypotheses and integrating our results. Our long-term goal is to characterize the mechanisms leading to the structural modification of resistance vessels in hypertension. These fundamentally important mechanistic studies will allow us to develop new strategies to prevent, stop, and/or reverse remodeling and the life threatening events associated with it. PUBLIC HEALTH RELEVANCE: Public Health Relevance Statement In people with high blood pressure, the small blood vessels known as resistance arterioles undergo a process of structural remodeling that reduces their internal diameter and increases the risk for heart attacks and stroke. The goal of this project is to understand the mechanisms that control this remodeling. This understanding will allow us to develop novel strategies for preventing, stopping, and/or reversing the remodeling process and the life threatening events that are associated with it.
描述(由申请人提供):血管重塑是一种自适应机制,用于长期修饰血管直径。在高血压中,向内重塑,即耐药容器中管腔直径的结构降低,与心肌梗塞和中风的风险增加有关。然而,尽管它与威胁生命的心血管事件相关联,但对启动和指导抗性微血管中向内重塑进展的机制知之甚少。在这方面,我们将重塑过程视为在结构改变的容器中达到顶点的事件的连续性。我们奇异的新颖和挑衅性的假设是,持续的小动脉血管收缩响应长时间的体液,和/或机械刺激启动重塑机制,其特征是以下特征:1)部分细胞外基质(ECM)组件的部分降解(周转); 2)血管平滑肌(VSM)细胞骨架的重排; 3)通过取决于活性氧(ROS)的细胞产生的过程来重新定位VSM细胞附着。使用在实验室中开发的高度创新的多光子成像技术,我们最近证明了分离的小动脉中的VSM细胞在长时间的血管收缩(高血压的标志)期间重新延长并迅速改变位置,同时维持减少的动脉直径。这种现象发生在短短四个小时内,我们建议是一种与内重塑相关的早期机制。我们进一步假设其他机制同时发生,包括:1)基质金属蛋白酶(MMP)的ROS依赖性激活以降解ECM; 2)小G蛋白Rho的ROS依赖性调节诱导钙敏化并重塑VSM细胞骨架; 3)依赖ROS依赖于整联蛋白依赖性VSM细胞附着的调制。我们将使用最先进的成像和分子方法在三个体内和两个体外模型中测试我们的假设。借助插入显微镜,我们将在体内监测血管重塑,并在多光子显微镜下,我们将确定分离的动脉中的VSM细胞行为和ECM变化。使用原子力显微镜(AFM)和荧光成像,我们将对新鲜分离的VSM细胞应用离散力,并监测局灶性粘附(细胞附着)和细胞骨架重塑。这些方法与分子和药理学技术结合使用,将在我们的特定目的中使用,以确定ROS,MMP,RHO和整合素在重塑中的作用。这些方法将为测试我们的假设和整合结果提供强大的策略。我们的长期目标是表征导致高血压中电阻血管结构修饰的机制。这些根本重要的机械研究将使我们能够制定新的策略来预防,停止和/或反向重塑以及与之相关的威胁生命的事件。公共卫生相关性:高血压患者的公共卫生相关性声明,被称为抗性小动脉的小血管经历了结构性改造的过程,可降低其内径,并增加心脏病发作和中风的风险。该项目的目的是了解控制这种重塑的机制。这种理解将使我们能够制定新的策略,以防止,停止和/或逆转重塑过程以及与之相关的威胁生命的事件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis A Martinez-Lemus其他文献
Luis A Martinez-Lemus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis A Martinez-Lemus', 18)}}的其他基金
Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
- 批准号:
10359775 - 财政年份:2021
- 资助金额:
$ 36.12万 - 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
- 批准号:
10207884 - 财政年份:2021
- 资助金额:
$ 36.12万 - 项目类别:
Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
- 批准号:
10569599 - 财政年份:2021
- 资助金额:
$ 36.12万 - 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
- 批准号:
10642932 - 财政年份:2021
- 资助金额:
$ 36.12万 - 项目类别:
相似国自然基金
基于原子力显微镜探讨肝纤维化动态进展中黏弹性生物力学基础
- 批准号:82202191
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大气细颗粒物中纳米微塑料的原子力显微镜-拉曼成像鉴定及污染特征分析
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
基于原子力显微镜的动态交联聚合物共价键解离/键合、链段松弛动力学及界面粘结研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于小角散射和原子力显微镜研究多因素诱导纳米TATB自聚长大机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于原子力显微镜与深度神经网络训练的巨噬细胞生物力学的研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of interactions between von Willebrand factor and its binding partners
冯维勒布兰德因子与其结合伙伴之间的相互作用机制
- 批准号:
10629031 - 财政年份:2023
- 资助金额:
$ 36.12万 - 项目类别:
An optical approach to 3-dimensional micro-mechanical imaging of the extra-cellular matrix (ECM)
细胞外基质 (ECM) 3 维微机械成像的光学方法
- 批准号:
10303697 - 财政年份:2021
- 资助金额:
$ 36.12万 - 项目类别:
An optical approach to 3-dimensional micro-mechanical imaging of the extra-cellular matrix (ECM)
细胞外基质 (ECM) 3 维微机械成像的光学方法
- 批准号:
10427422 - 财政年份:2021
- 资助金额:
$ 36.12万 - 项目类别:
Reactive Ion Plasma Treatment of Cardiovascular Biomaterials to Understand the Effect of Nanotopography on Endothelialization
反应离子等离子体处理心血管生物材料以了解纳米形貌对内皮化的影响
- 批准号:
10671521 - 财政年份:2021
- 资助金额:
$ 36.12万 - 项目类别:
Reactive Ion Plasma Treatment of Cardiovascular Biomaterials to Understand the Effect of Nanotopography on Endothelialization
反应离子等离子体处理心血管生物材料以了解纳米形貌对内皮化的影响
- 批准号:
10172365 - 财政年份:2021
- 资助金额:
$ 36.12万 - 项目类别: