Mechanisms of Microvascular Remodeling Progression
微血管重塑进展机制
基本信息
- 批准号:8470212
- 负责人:
- 金额:$ 34.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAtomic Force MicroscopyBlood VesselsCalciumCaliberCardiovascular systemCell-Matrix JunctionCollagen Type ICytoskeletonDNA Sequence RearrangementEventExtracellular MatrixExtracellular Matrix DegradationFibronectinsFocal AdhesionsGoalsHealthHourHypertensionImageImaging TechniquesImmunohistochemistryIntegrinsLaboratoriesLengthLifeMatrix MetalloproteinasesMeasuresMechanicsMethodologyMicroscopyModelingModificationMolecularMonitorMonomeric GTP-Binding ProteinsMyocardial InfarctionPositioning AttributeProcessProductionReactive Oxygen SpeciesResearchResistanceRiskRoleSmooth Muscle MyocytesStimulusStrokeStructureTechniquesTestingTherapeutic procedureVascular Smooth MuscleVascular remodelingVasoconstrictor AgentsVasodilator Agentsarteriolecell behaviorfluorescence imagingin vitro Modelin vivoin vivo Modelinnovationintravital microscopymolecular imagingnovelnovel strategiespreventprophylacticpublic health relevanceresearch studyresponserhovasoconstriction
项目摘要
DESCRIPTION (provided by applicant): Vascular remodeling is an adaptive mechanism for long-term modification of vascular diameter. In hypertension, inward remodeling, that is, the structural reduction of the lumen diameter in resistance vessels, is associated with an increased risk for myocardial infarction and stroke. However, despite its association with life threatening cardiovascular events, little is known about the mechanisms that initiate and guide the progression of inward remodeling in the resistance microvessels. In this regard, we view the remodeling process as a continuum of events that culminate in the structurally altered vessel. Our singularly novel and provocative hypothesis is that sustained arteriolar vasoconstriction in response to prolonged humoral, and/or mechanical stimuli initiates remodeling mechanisms characterized by: 1) partial degradation (turnover) of the extracellular matrix (ECM) components of the vessel wall; 2) rearrangement of the vascular smooth muscle (VSM) cytoskeleton; and 3) repositioning of the VSM cellular attachments via processes that depend on the cellular production of reactive oxygen species (ROS). Using a highly innovative multiphoton imaging technique developed in our laboratories, we recently demonstrated that VSM cells in isolated arterioles re-lengthen and rapidly change position during prolonged vasoconstriction (a hallmark of hypertension) while the reduced arteriolar diameter is maintained. This phenomenon occurs in as little as four hours, and we propose is an early mechanism associated with inward remodeling. We further hypothesize that other mechanisms occur concurrently, including: 1) ROS-dependent activation of matrix metalloproteinases (MMP) to degrade the ECM; 2) ROS-dependent modulation of the small G protein Rho to induce calcium sensitization and remodel the VSM cytoskeleton; and 3) ROS-dependent modulation of integrin-dependent VSM cell attachments. We will test our hypotheses in three in vivo and two in vitro models using state of the art imaging and molecular approaches. With intravital microscopy we will monitor vascular remodeling in vivo, and with multiphoton microscopy, we will determine VSM cell behavior and ECM changes in isolated arterioles. With atomic force microscopy (AFM) and fluorescence imaging we will apply discrete forces to freshly isolated VSM cells and monitor focal adhesion (cellular attachments) and cytoskeletal remodeling. These methodologies combined with molecular and pharmacological techniques will be used in our Specific Aims to determine the role of ROS, MMPs, Rho, and integrins on remodeling. These approaches will provide a powerful strategy for testing our hypotheses and integrating our results. Our long-term goal is to characterize the mechanisms leading to the structural modification of resistance vessels in hypertension. These fundamentally important mechanistic studies will allow us to develop new strategies to prevent, stop, and/or reverse remodeling and the life threatening events associated with it.
描述(由申请人提供):血管重塑是血管直径长期改变的适应性机制。在高血压中,向内重塑,即阻力血管管腔直径的结构性减小,与心肌梗塞和中风的风险增加相关。然而,尽管它与危及生命的心血管事件有关,但人们对阻力微血管内向重塑的启动和引导进展的机制知之甚少。在这方面,我们将改造过程视为一个连续的事件,最终导致船舶结构发生改变。我们独特新颖且具有启发性的假设是,响应于长时间的体液和/或机械刺激而持续的小动脉血管收缩启动了重塑机制,其特征在于:1)血管壁的细胞外基质(ECM)成分部分降解(周转); 2)血管平滑肌(VSM)细胞骨架的重排; 3) 通过依赖于细胞活性氧 (ROS) 产生的过程重新定位 VSM 细胞附着物。使用我们实验室开发的高度创新的多光子成像技术,我们最近证明,在长时间的血管收缩(高血压的标志)期间,孤立的小动脉中的 VSM 细胞重新延长并快速改变位置,同时保持减小的小动脉直径。这种现象在短短四个小时内就会发生,我们认为这是一种与向内重塑相关的早期机制。我们进一步假设其他机制同时发生,包括:1)基质金属蛋白酶(MMP)的ROS依赖性激活以降解ECM; 2)ROS依赖性调节小G蛋白Rho诱导钙敏化并重塑VSM细胞骨架; 3) 整合素依赖性 VSM 细胞附着的 ROS 依赖性调节。我们将使用最先进的成像和分子方法在三个体内和两个体外模型中测试我们的假设。通过活体显微镜,我们将监测体内血管重塑,通过多光子显微镜,我们将确定离体小动脉中的 VSM 细胞行为和 ECM 变化。通过原子力显微镜 (AFM) 和荧光成像,我们将向新鲜分离的 VSM 细胞施加离散力,并监测粘着斑(细胞附着)和细胞骨架重塑。这些方法与分子和药理学技术相结合,将用于我们的具体目标,以确定 ROS、MMP、Rho 和整合素在重塑中的作用。这些方法将为检验我们的假设和整合我们的结果提供强大的策略。我们的长期目标是确定导致高血压阻力血管结构改变的机制。这些至关重要的机制研究将使我们能够制定新的策略来预防、停止和/或逆转重塑以及与之相关的危及生命的事件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis A Martinez-Lemus其他文献
Luis A Martinez-Lemus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis A Martinez-Lemus', 18)}}的其他基金
Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
- 批准号:
10359775 - 财政年份:2021
- 资助金额:
$ 34.36万 - 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
- 批准号:
10207884 - 财政年份:2021
- 资助金额:
$ 34.36万 - 项目类别:
Targeting ADAM17 activity for correction of vascular insulin resistance in type 2 diabetes
靶向 ADAM17 活性纠正 2 型糖尿病血管胰岛素抵抗
- 批准号:
10569599 - 财政年份:2021
- 资助金额:
$ 34.36万 - 项目类别:
Role of neuraminidase activity on endothelial dysfunction in type 2 diabetes
神经氨酸酶活性对 2 型糖尿病内皮功能障碍的作用
- 批准号:
10642932 - 财政年份:2021
- 资助金额:
$ 34.36万 - 项目类别:
相似国自然基金
基于原子力显微镜探讨肝纤维化动态进展中黏弹性生物力学基础
- 批准号:82202191
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大气细颗粒物中纳米微塑料的原子力显微镜-拉曼成像鉴定及污染特征分析
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
基于原子力显微镜的动态交联聚合物共价键解离/键合、链段松弛动力学及界面粘结研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于小角散射和原子力显微镜研究多因素诱导纳米TATB自聚长大机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于原子力显微镜与深度神经网络训练的巨噬细胞生物力学的研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of interactions between von Willebrand factor and its binding partners
冯维勒布兰德因子与其结合伙伴之间的相互作用机制
- 批准号:
10629031 - 财政年份:2023
- 资助金额:
$ 34.36万 - 项目类别:
An optical approach to 3-dimensional micro-mechanical imaging of the extra-cellular matrix (ECM)
细胞外基质 (ECM) 3 维微机械成像的光学方法
- 批准号:
10303697 - 财政年份:2021
- 资助金额:
$ 34.36万 - 项目类别:
An optical approach to 3-dimensional micro-mechanical imaging of the extra-cellular matrix (ECM)
细胞外基质 (ECM) 3 维微机械成像的光学方法
- 批准号:
10427422 - 财政年份:2021
- 资助金额:
$ 34.36万 - 项目类别:
Reactive Ion Plasma Treatment of Cardiovascular Biomaterials to Understand the Effect of Nanotopography on Endothelialization
反应离子等离子体处理心血管生物材料以了解纳米形貌对内皮化的影响
- 批准号:
10671521 - 财政年份:2021
- 资助金额:
$ 34.36万 - 项目类别:
Reactive Ion Plasma Treatment of Cardiovascular Biomaterials to Understand the Effect of Nanotopography on Endothelialization
反应离子等离子体处理心血管生物材料以了解纳米形貌对内皮化的影响
- 批准号:
10172365 - 财政年份:2021
- 资助金额:
$ 34.36万 - 项目类别: