Endoplasmic Reticulum-to-Mitochondria Calcium Transfer in Pancreatic Cancer Development, Metastasis, and Treatment
胰腺癌发生、转移和治疗中的内质网至线粒体钙转移
基本信息
- 批准号:10208636
- 负责人:
- 金额:$ 52.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAcuteAmericanAnimal ModelAnimalsAutophagocytosisBiochemicalBioenergeticsBiologicalBiological AssayBiophysicsCRISPR/Cas technologyCalciumCancer PatientCancer cell lineCause of DeathCell Culture TechniquesCell LineCell SurvivalCellsCellular Metabolic ProcessCessation of lifeCitric Acid CycleCytoplasmDependenceDevelopmentDiagnosisDiseaseEarly DiagnosisEarly identificationElectrophysiology (science)Endoplasmic ReticulumFibroblastsFutureGelGeneticGenetic ModelsGrowthHomeostasisHumanITPR1 geneImmune responseIn VitroInterruptionInvadedIon ChannelLeadLuciferasesMaintenanceMalignant NeoplasmsMalignant neoplasm of pancreasMalignant neoplasm of prostateMediatingMembraneMetabolicMetabolismMethodsMitochondriaModelingMolecularMorphologyMusNOD/SCID mouseNeoplasm MetastasisNormal CellOrganellesOxidoreductaseOxygen ConsumptionPancreatic AdenocarcinomaPancreatic Ductal AdenocarcinomaPathway interactionsPatient-Focused OutcomesPatientsPermeabilityPharmaceutical PreparationsPharmacologyPlayProcessPrognosisPropertyProteinsRegulationRenal carcinomaReporter GenesRoleSavingsSignal TransductionSiteSurvival RateSystemTailTechnologyTherapeuticVeinsWorkadvanced diseaseanti-canceranti-cancer therapeuticbiophysical techniquescalcium uniportercancer cellcancer therapycell motilitycell typedesigner receptors exclusively activated by designer drugsepithelial to mesenchymal transitionfallsgenetic predictorsgenetically modified cellsimprovedin vivoinnovationlive cell imagingmalignant breast neoplasmmigrationmouse modelneoplastic cellnew therapeutic targetnovelnovel therapeuticspancreatic cancer patientspancreatic cell lineresponsetargeted treatmenttherapeutic targetthree-dimensional modelingtumortumor progressiontumorigenesistumorigenicuptake
项目摘要
Pancreatic adenocarcinoma (PDAC) is a particularly lethal form of cancer that kills over 40,000 Americans
every year. PDAC is most often diagnosed when disease is advanced, with metastases that lead to death.
Patient outcomes are further negatively-impacted by a typical poor response to currently-available treatments.
It is thus critical to develop a stronger understanding of the processes which lead to PDAC development and
metastasis, as well as to determine novel, more-efficacious targets for therapies. Low-level, constitutive
endoplasmic reticulum (ER)-to-mitochondria transfer of calcium is required for optimal bioenergetics and
cancer-cell survival. We hypothesize that this pathway contributes to pancreatic cancer development,
metastasis, and tumor maintenance, and may therefore present a viable anticancer target. The ER-localized
IP3R calcium-release ion channel and the mitochondrial calcium-uniporter ion channel, MCU, mediate calcium
transfer between the two organelles at membrane-contact sites. However, it has been impossible to target this
pathway in vivo because of the lack of selective, cell-permeable pharmacological agents against these ion
channels. We therefore propose to examine the role of ER-to-mitochondria calcium transfer in PDAC
development, metastasis, and tumor maintenance through the use of novel animal and cell-culture models. We
will genetically delete MCU during early development in a murine genetic-model of PDAC, the KPCY mouse, to
observe the role of this protein in tumor development. In addition, we will use tumor cells as well as genetically-
modified cells using Cre/lox and CRISPR/Cas9 systems, as well as patient-derived cell lines and the
established human PDAC cell line, Panc-1. We will assay proliferation, cellular bioenergetics, oxygen
consumption rates, and mitochondrial calcium homeostasis, using biochemical, cell biological and biophysical
approaches, including electrophysiology, live-cell imaging and fluorimetry, to define the role of ER-to-
mitochondria calcium transfer in these processes. To determine the role of MCU in metastasis, we will quantify
metastasis in the KPCY model using the sensitive YFP-reporter gene, and we will use an in vivo tail-vein
metastasis model with genetically-modified Panc-1 cells expressing luciferase in NOD/SCID mice, as well as in
vitro transwell-invasion and gel-degradation assays, and biochemical and morphological assessment of
metastasis-associated markers of epithelial-to-mesenchymal transition. To observe the role of ER-to-
mitochondria calcium transfer in tumor maintenance and thus its therapeutic potential for more advanced
disease, we will use an inducible CRISPR/Cas9 cell-culture model of murine PDAC in vitro and an in vivo
inducible orthotopic model to observe the effects of acute MCU ablation in already-growing tumors and cells as
a method to simulate profound pharmacological inhibition. These studies will elucidate the role of ER-to-
mitochondria calcium transfer in PDAC development, metastasis, and maintenance, and they may inform
future development of novel therapeutic targets in PDAC, potentially saving lives.
胰腺腺癌(PDAC)是一种特别致命的癌症,杀死了40,000多名美国人
每年。 PDAC最常在疾病疾病时被诊断出,转移导致死亡。
对当前可用治疗的典型反应不佳,患者的结果进一步影响。
因此,至关重要的是要对过程进行更深入的了解,从而导致PDAC发展和
转移以及确定新颖,更有效的疗法靶标。低级,构成
最佳生物能和钙的钙转移是内质网(ER) - 最佳生物能量的转移
癌症生存。我们假设这种途径有助于胰腺癌的发展,
转移和肿瘤维持,因此可能提出一个可行的抗癌靶标。 ER定位
IP3R钙释放离子通道和线粒体钙 - 抹骨离子通道,MCU,介导钙
在膜 - 接触部位的两个细胞器之间转移。但是,不可能针对这个
由于缺乏针对这些离子的选择性,可渗透的药理剂,因此体内途径
频道。因此,我们建议检查ER到线粒体钙转移在PDAC中的作用
通过使用新型动物和细胞培养模型的发展,转移和肿瘤维持。我们
将在PDAC的鼠遗传模型(KPCY小鼠的鼠遗传模型中)在早期发育过程中遗传删除MCU,
观察该蛋白在肿瘤发育中的作用。此外,我们将使用肿瘤细胞以及遗传 -
使用CRE/LOX和CRISPR/CAS9系统以及患者衍生的细胞系以及
建立的人类PDAC细胞系,Panc-1。我们将测定增殖,细胞生物能,氧气
消耗率和线粒体钙稳态,使用生化,细胞生物学和生物物理学
方法,包括电生理学,活细胞成像和荧光测定法,以定义ER到ER的作用
线粒体钙转移在这些过程中。为了确定MCU在转移中的作用,我们将量化
使用敏感的YFP-Reporter基因的KPCY模型中的转移,我们将使用体内尾静脉
具有遗传改性的panc-1细胞的转移模型,表达在NOD/SCID小鼠中以及在
体外移植和凝胶降解测定法,以及生化和形态评估
上皮到间质转变的转移相关标记。观察ER到ER的作用
线粒体钙的维持中的钙转移,因此其治疗潜力更先进
疾病,我们将在体外使用诱导的CRISPR/CAS9细胞培养模型和体内
可诱导的原位模型观察急性MCU消融在已经成长的肿瘤和细胞中的影响
一种模拟深刻药理抑制的方法。这些研究将阐明ER到达的作用
PDAC开发,转移和维护中的线粒体钙转移,它们可能会告知
PDAC中新型治疗靶标的未来开发,有可能挽救生命。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Kevin FOSKETT其他文献
James Kevin FOSKETT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Kevin FOSKETT', 18)}}的其他基金
Endoplasmic Reticulum-to-Mitochondria Calcium Transfer in Pancreatic Cancer Development, Metastasis, and Treatment
胰腺癌发生、转移和治疗中的内质网至线粒体钙转移
- 批准号:
10679078 - 财政年份:2021
- 资助金额:
$ 52.66万 - 项目类别:
Endoplasmic Reticulum-to-Mitochondria Calcium Transfer in Pancreatic Cancer Development, Metastasis, and Treatment
胰腺癌发生、转移和治疗中的内质网至线粒体钙转移
- 批准号:
10443604 - 财政年份:2021
- 资助金额:
$ 52.66万 - 项目类别:
Molecular physiology of intracellular InsP3R and MCU ion channels
细胞内 InsP3R 和 MCU 离子通道的分子生理学
- 批准号:
10614508 - 财政年份:2021
- 资助金额:
$ 52.66万 - 项目类别:
Molecular physiology of intracellular InsP3R and MCU ion channels
细胞内 InsP3R 和 MCU 离子通道的分子生理学
- 批准号:
10170553 - 财政年份:2021
- 资助金额:
$ 52.66万 - 项目类别:
Molecular physiology of intracellular InsP3R and MCU ion channels
细胞内 InsP3R 和 MCU 离子通道的分子生理学
- 批准号:
10398929 - 财政年份:2021
- 资助金额:
$ 52.66万 - 项目类别:
Identification of CALHM proteins as ion channels
CALHM 蛋白作为离子通道的鉴定
- 批准号:
10044119 - 财政年份:2020
- 资助金额:
$ 52.66万 - 项目类别:
Role of CALHM1 ion channel in taste transduction
CALHM1离子通道在味觉传导中的作用
- 批准号:
8650279 - 财政年份:2013
- 资助金额:
$ 52.66万 - 项目类别:
相似国自然基金
用于急性出血控制的硅酸钙复合海绵的构建及其促凝血性能和机制研究
- 批准号:32301097
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
- 批准号:82300739
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代谢工程化MSC胞外囊泡靶向调控巨噬细胞线粒体动力学改善急性肾损伤的作用及机制研究
- 批准号:32371426
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
DUSP2介导自噬调控气管上皮细胞炎症在急性肺损伤中的机制研究
- 批准号:82360379
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
超声射频信号神经回路策略模型定量肌肉脂肪化评估慢加急性肝衰竭预后
- 批准号:82302221
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 52.66万 - 项目类别:
Dissecting ventral pallidal plasticity in punishment-resistant opioid self-administration
剖析抗惩罚阿片类药物自我给药中的腹侧苍白球可塑性
- 批准号:
10726036 - 财政年份:2023
- 资助金额:
$ 52.66万 - 项目类别:
Identification of a dopamine circuit mediating day eating and diet-induced obesity in mice
介导小鼠日间饮食和饮食诱导肥胖的多巴胺回路的鉴定
- 批准号:
10730567 - 财政年份:2023
- 资助金额:
$ 52.66万 - 项目类别:
Multi-functional cellular therapies to overcome tumor heterogeneity and limit toxicity in acute myeloid leukemia
多功能细胞疗法克服肿瘤异质性并限制急性髓系白血病的毒性
- 批准号:
10679763 - 财政年份:2023
- 资助金额:
$ 52.66万 - 项目类别:
Defining The Role of Failed-Repair Proximal Tubule Cells in AdvancedRenal Disease in African Americans
确定修复失败的近端小管细胞在非裔美国人晚期肾病中的作用
- 批准号:
10740665 - 财政年份:2023
- 资助金额:
$ 52.66万 - 项目类别: