A 3D human tissue-engineered lung model to study immune responses to Respiratory Syncytial Virus
用于研究呼吸道合胞病毒免疫反应的 3D 人体组织工程肺模型
基本信息
- 批准号:10206139
- 负责人:
- 金额:$ 51.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActivities of Daily LivingAdoptedAdultAgeAlveolar MacrophagesAnimal ModelAntiviral ResponseAspirate substanceBiological ModelsBiomedical EngineeringBloodBronchiolitisBronchoalveolar LavageCell CommunicationCell surfaceCellsChildClinical DataCommunicationDendritic CellsDevelopmentDiseaseDistalEndotheliumEngineeringEnvironmentEpithelial CellsExhibitsExperimental ModelsExtracellular MatrixFutureGoalsHomeostasisHumanImmuneImmune responseImmunityImmunologicsInfantInfectionInfectious AgentInflammatoryInflammatory ResponseInfluenza A virusInnate Immune ResponseIntegration Host FactorsKnowledgeLifeLungLung TransplantationLung diseasesMeasuresModelingMorphologyMusMyeloid CellsNeonatalNewborn InfantOutcomes ResearchPathogenesisPathologyPatientsPhenotypePhysiologicalPlayPopulationPredispositionPrimary InfectionProductionResearchResearch Project GrantsRespiratory Syncytial Virus InfectionsRespiratory Syncytial Virus VaccinesRespiratory syncytial virusRoleSourceStimulusStromal CellsStructure of respiratory epitheliumTestingTherapeutic InterventionTimeTissue EngineeringUmbilical Cord BloodVascular EndotheliumViralViral BronchiolitisViral PathogenesisViral PneumoniaVirulence FactorsVirus DiseasesWorkairway epitheliumcell motilitycell typechemokinecytokinedesignexperiencehuman tissueimprovedinnate immune pathwayslung basal segmentmacrophagemonocyteneonateneutrophilnovelnovel therapeuticsnovel vaccinesperipheral bloodpreventive interventionrecruitresponsescaffoldtreatment strategyvaccine development
项目摘要
Respiratory syncytial virus (RSV) is the leading cause of viral bronchiolitis and pneumonia worldwide, infecting
more than 70% of children in the first year. RSV causes more frequent and severe infections in infants
compared to adults. The development of vaccines has been complicated by the fact that host immune
responses to RSV play a significant role in disease pathogenesis. A key to RSV pathogenesis may lie in
defining the mechanisms associated with a deficient immune response at a time of immunological immaturity.
The study of the responses of lung-resident myeloid cells to RSV in human infants has been limited due to the
lack of available models. While it is possible to measure cytokines and chemokines present in tracheal
aspirates in RSV bronchiolitis patients, it is difficult to obtain sufficient numbers of cells to perform mechanistic
studies that might elucidate innate immune pathways that are defective in young children. Therefore, new
models facilitating control of the timing of infection and cell manipulation are needed to compare the anti-RSV
responses of neonatal and adult myeloid cells. An understanding of these mechanisms can aid in the design of
new vaccines and therapies.
Our long-term research goal is to use a 3D Human Tissue-Engineered Lung Model (3D-HTLM) that exhibits a
normal immunological response against infectious agents to elucidate some of the viral and host determinants.
The objective of this project is to create a 3D-HTLM that will be used to determine the mechanisms by which
immunological immaturity leads to greater RSV pathogenesis. An advantage of the lung model is the ability to
test the effect of immunological immaturity by comparing the response of young infants and children vs. adult
immune cells to RSV infection. To achieve this goal, the 3D-HTLM will contain the cell types relevant to
infection and an inflammatory response, including vascular endothelium, a respiratory epithelium, supporting
stromal cells, and myeloid cells, both resident and inflammatory. The 3D-HTLM includes a 3D scaffold and
extracellular matrix materials to allow for the correct cell physiological function and cell-to-cell interactions.
We will pursue two specific aims. Aim 1: Determine if the lung microenvironment within the 3D-HTLM instructs
the differentiation of lung resident myeloid cells. Aim 2: Compare the innate immune response of myeloid cells
isolated from neonatal cord blood, young children and adults to RSV infection in the 3D-HTLM.
The project will yield new information about the immune response that will provide new targets for preventative
and therapeutic interventions of RSV infection, and the tissue-engineered lung model also may be used for
testing RSV treatment strategies. In addition, expanding our knowledge about how cells interact with each
other and with their environment will vertically advance the field of tissue engineering and the future
development of an engineered lung for lung transplantation to treat a variety of lung diseases.
呼吸道合胞病毒 (RSV) 是全世界病毒性细支气管炎和肺炎的主要原因,可感染
超过70%的儿童在第一年。 RSV 导致婴儿更频繁、更严重的感染
与成人相比。由于宿主免疫系统的存在,疫苗的开发变得更加复杂。
对 RSV 的反应在疾病发病机制中发挥着重要作用。 RSV 发病机制的关键可能在于
定义与免疫不成熟时期免疫反应缺陷相关的机制。
由于以下原因,人类婴儿肺驻留髓细胞对 RSV 反应的研究受到限制:
缺乏可用的模型。虽然可以测量气管中存在的细胞因子和趋化因子
RSV 细支气管炎患者的抽吸物,很难获得足够数量的细胞来进行机械分析
可能阐明幼儿先天免疫途径缺陷的研究。因此,新
需要有利于控制感染时间和细胞操作的模型来比较抗 RSV
新生儿和成人骨髓细胞的反应。了解这些机制有助于设计
新的疫苗和疗法。
我们的长期研究目标是使用 3D 人体组织工程肺模型 (3D-HTLM),该模型表现出
针对感染原的正常免疫反应,以阐明一些病毒和宿主决定因素。
该项目的目标是创建一个 3D-HTLM,用于确定
免疫不成熟导致 RSV 发病机制更严重。肺模型的一个优点是能够
通过比较幼儿和儿童与成人的反应来测试免疫不成熟的影响
免疫细胞抵抗 RSV 感染。为了实现这一目标,3D-HTLM 将包含与
感染和炎症反应,包括血管内皮、呼吸道上皮、支持
基质细胞和骨髓细胞,包括常驻细胞和炎症细胞。 3D-HTLM 包括 3D 支架和
细胞外基质材料,以实现正确的细胞生理功能和细胞间相互作用。
我们将追求两个具体目标。目标 1:确定 3D-HTLM 内的肺部微环境是否指示
肺驻留髓细胞的分化。目标 2:比较骨髓细胞的先天免疫反应
从新生儿脐带血、幼儿和成人中分离出RSV感染的3D-HTLM。
该项目将产生有关免疫反应的新信息,从而为预防提供新的目标
RSV感染的治疗和干预,组织工程肺模型也可用于
测试 RSV 治疗策略。此外,扩大我们关于细胞如何相互作用的知识
其他及其环境将垂直推进组织工程领域和未来
开发用于肺移植的工程肺,以治疗多种肺部疾病。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sex chromosome complement and sex steroid signaling underlie sex differences in immunity to respiratory virus infection.
- DOI:10.3389/fphar.2023.1150282
- 发表时间:2023
- 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heather Fahlenkamp其他文献
Heather Fahlenkamp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heather Fahlenkamp', 18)}}的其他基金
A 3D human tissue-engineered lung model to study immune responses to Respiratory Syncytial Virus
用于研究呼吸道合胞病毒免疫反应的 3D 人体组织工程肺模型
- 批准号:
9789274 - 财政年份:2018
- 资助金额:
$ 51.79万 - 项目类别:
THE EFFECTS OF AGES ON CELL BEHAVIOR WITHIN A 3D VASCULAR TISSUE CONSTRUCT
年龄对 3D 血管组织结构内细胞行为的影响
- 批准号:
8167974 - 财政年份:2010
- 资助金额:
$ 51.79万 - 项目类别:
相似国自然基金
老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
- 批准号:81902295
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Effect of Osseointegrated Prostheses on the Pathogenesis of Hip Osteoarthritis in Patients with Lower Limb Loss
骨整合假体对下肢丧失患者髋骨关节炎发病机制的影响
- 批准号:
10662142 - 财政年份:2023
- 资助金额:
$ 51.79万 - 项目类别:
Visual mechanisms of intermediate distance space perception during self-motion
自运动中距离空间感知的视觉机制
- 批准号:
10317155 - 财政年份:2021
- 资助金额:
$ 51.79万 - 项目类别:
Visual mechanisms of intermediate distance space perception during self-motion
自运动中距离空间感知的视觉机制
- 批准号:
10480950 - 财政年份:2021
- 资助金额:
$ 51.79万 - 项目类别:
Visual mechanisms of intermediate distance space perception during self-motion
自运动中距离空间感知的视觉机制
- 批准号:
10688137 - 财政年份:2021
- 资助金额:
$ 51.79万 - 项目类别:
Exoskeleton footwear to improve walking performance and subject-reported preference.
外骨骼鞋可提高步行性能和受试者报告的偏好。
- 批准号:
10356831 - 财政年份:2020
- 资助金额:
$ 51.79万 - 项目类别: