Determining the optimal ion and fractionation scheme for the treatment of GBM in a comprehensive human organoid model
在综合人体类器官模型中确定治疗 GBM 的最佳离子和分级方案
基本信息
- 批准号:10360627
- 负责人:
- 金额:$ 46.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimal ModelApoptosisAreaBiologicalBiological ModelsBrainBrain DiseasesBrain GlioblastomaBrain InjuriesBrain NeoplasmsCarbonCarbon ionCell DeathCell SurvivalCellsCerebrumCessation of lifeClinicalClinical TreatmentClinical TrialsCoculture TechniquesDataDepositionDiseaseDoseDose FractionationEffectivenessEnvironmentFractionationGlioblastomaGliomaGrowthHeavy IonsHeterogeneityHigh-LET RadiationHumanImmunocompetentImmunotherapyIn VitroIncidenceIonsKnowledgeLeadMalignant NeoplasmsMapsMissionMitoticModelingMolecularMusNational Cancer InstituteNecrosisNecrosis InductionNeuraxisNeuronsNormal tissue morphologyOrganoidsPathway interactionsPatientsPharmacologyPhotonsPlayProtonsPublic HealthRadiationRadiation Dose UnitRadiation necrosisRadiation therapyRelative Biological EffectivenessReportingResearchResearch SupportRodent ModelRoentgen RaysRoleSchemeSignal PathwaySurvival RateSystemTissuesToxic effectTransgenic AnimalsTreatment EfficacyVariantbasebrain tissuecancer cellcancer rehabilitationcancer therapycarbon ion therapycell killingcell typeclinical practiceclinically relevantcombinatorialdensitydesigndisorder controlimprovedin vitro Modelin vivoin vivo Modelinduced pluripotent stem cellinterestionizationirradiationneoplastic cellneuroinflammationnovelnovel therapeuticsparticleparticle beamparticle therapypatient responsephenomenological modelsphysical propertyprocess optimizationprogramsproton therapyradiation resistanceradiation responseradioresistantresponsestem cellssuccesstherapy developmenttreatment planningtreatment responsetumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Radiation plays a central role in the management of the most lethal central nervous system malignancy,
glioblastoma (GBM), yet local control rates, and hence survival, remain dismal for this disease. Even novel
therapies, such as immunotherapy, have not shown efficacy in the treatment of GBM. Meanwhile, radiation
dose escalation studies have demonstrated improved local control. However, dose escalated treatments are
hindered by the increased incidence of radiation induced brain necrosis in surrounding tissues. High LET
particle therapy holds the potential to both increase tumor cell kill and decrease normal tissue toxicity, yet
the data required to develop models for clinical treatments regarding the biological effectiveness of high LET
beams on normal brain tissue and GBM cells is sparse. This fact is especially true when considering results
reported utilizing the appropriate environment for the origination and growth of GBM cells – the human
brain. We have implemented recently developed high accuracy models which are truly beginning to
recapitulate the native GBM niche in order to correlate both necrosis induction and progression and tumor
cell response with the physical parameters of particle beams. These models include multi-cell type human
brain organoids (cerebral organoids) as well as immune-competent orthotopic rodent models. Using these
models, we will identify the physical factors of particle beams which may lead to necrosis. This is significant
in that this data will aid the design of safer treatments by reducing necrosis and improving disease control.
In the second component of our study, we will examine the molecular mechanisms of necrosis and
neuroinflammation. Rather than being a simple accidental, disorganized death, we will determine if radiation
induces an orderly programmed cell death pathway. Overall, we will conduct the following aims; (1) identify
the optimal particle and fractionation for treatment of GBM, (2) explore the cellular and molecular
mechanisms of radiation induced brain damage, and (3) develop biological effect models for clinical use.
The knowledge gained will quickly influence the treatment of brain tumor patients and expedite the clinical
introduction heavy ion therapy for glioblastoma.
项目概要/摘要
放射在最致命的中枢神经系统恶性肿瘤的治疗中发挥着核心作用,
胶质母细胞瘤(GBM),但这种疾病的局部控制率和生存率仍然很低,甚至是一种新疾病。
免疫疗法等疗法尚未显示出治疗 GBM 的功效。
剂量递增研究已证明局部控制得到改善,但剂量递增治疗仍存在局限性。
高 LET 导致周围组织中辐射引起的脑坏死发生率增加,从而阻碍了这一进程。
粒子疗法具有增加肿瘤细胞杀伤和降低正常组织毒性的潜力,但
开发有关高 LET 生物学有效性的临床治疗模型所需的数据
考虑到结果时,正常脑组织和 GBM 细胞上的光束是稀疏的。
据报道,利用适当的环境来促进GBM细胞的起源和生长——人类
我们已经实施了最近开发的高精度模型,这些模型真正开始了。
概括天然 GBM 生态位,以便将坏死诱导和进展与肿瘤相关联
细胞响应与粒子束的物理参数这些模型包括多细胞类型的人类。
脑类器官(大脑类器官)以及具有免疫能力的原位啮齿动物模型。
模型中,我们将识别出可能导致坏死的粒子束物理因素,这一点意义重大。
因为这些数据将通过减少坏死和改善疾病控制来帮助设计更安全的治疗方法。
在我们研究的第二部分中,我们将研究坏死和坏死的分子机制。
我们将确定是否是辐射引起的,而不是简单的意外、无组织的死亡。
总体而言,我们将实现以下目标:(1)确定。
治疗 GBM 的最佳颗粒分级,(2)探索细胞和分子
辐射引起的脑损伤的机制,以及(3)开发临床使用的生物效应模型。
所获得的知识将迅速影响脑肿瘤患者的治疗并加快临床进展
介绍胶质母细胞瘤的重离子治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID R GROSSHANS其他文献
DAVID R GROSSHANS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID R GROSSHANS', 18)}}的其他基金
Project 3: Enhanced Sensitivity of Tumors to Proton Beam Therapy: Mechanisms and Biomarkers.
项目 3:增强肿瘤对质子束治疗的敏感性:机制和生物标志物。
- 批准号:
10491858 - 财政年份:2021
- 资助金额:
$ 46.13万 - 项目类别:
Characterization of the cellular mechanisms of radiation induced brain necrosis for clinical intervention
放射性脑坏死细胞机制的表征用于临床干预
- 批准号:
10661007 - 财政年份:2021
- 资助金额:
$ 46.13万 - 项目类别:
Characterization of the cellular mechanisms of radiation induced brain necrosis for clinical intervention
放射性脑坏死细胞机制的表征用于临床干预
- 批准号:
10273297 - 财政年份:2021
- 资助金额:
$ 46.13万 - 项目类别:
Project 3: Enhanced Sensitivity of Tumors to Proton Beam Therapy: Mechanisms and Biomarkers.
项目 3:增强肿瘤对质子束治疗的敏感性:机制和生物标志物。
- 批准号:
10270307 - 财政年份:2021
- 资助金额:
$ 46.13万 - 项目类别:
Determining the optimal ion and fractionation scheme for the treatment of GBM in a comprehensive human organoid model
在综合人体类器官模型中确定治疗 GBM 的最佳离子和分级方案
- 批准号:
10570305 - 财政年份:2021
- 资助金额:
$ 46.13万 - 项目类别:
Characterization of the cellular mechanisms of radiation induced brain necrosis for clinical intervention
放射性脑坏死细胞机制的表征用于临床干预
- 批准号:
10460578 - 财政年份:2021
- 资助金额:
$ 46.13万 - 项目类别:
(PQ 9) Synaptic basis of deficits in attention and executive function following cranial radiation
(PQ 9) 颅脑辐射后注意力和执行功能缺陷的突触基础
- 批准号:
9763496 - 财政年份:2016
- 资助金额:
$ 46.13万 - 项目类别:
(PQ 9) Synaptic basis of deficits in attention and executive function following cranial radiation
(PQ 9) 颅脑辐射后注意力和执行功能缺陷的突触基础
- 批准号:
9172110 - 财政年份:2016
- 资助金额:
$ 46.13万 - 项目类别:
Mapping Proton RBE Variability Using Automated Biology and Monte Carlo Techniques
使用自动化生物学和蒙特卡罗技术绘制质子 RBE 变异性
- 批准号:
8754187 - 财政年份:2014
- 资助金额:
$ 46.13万 - 项目类别:
Mapping Proton RBE Variability Using Automated Biology and Monte Carlo Techniques
使用自动化生物学和蒙特卡罗技术绘制质子 RBE 变异性
- 批准号:
8887318 - 财政年份:2014
- 资助金额:
$ 46.13万 - 项目类别:
相似国自然基金
组织器官衰老致退行性演变多示踪剂全身动态PET显像研究
- 批准号:91949121
- 批准年份:2019
- 资助金额:68.0 万元
- 项目类别:重大研究计划
Slug参与CP-31398介导的p53突变型子宫内膜癌细胞凋亡的机制研究
- 批准号:81702967
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
Fascin-2基因TALEN敲除小鼠渐进性听力减退的机制研究
- 批准号:81771020
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:面上项目
N-甲基-N-亚硝脲诱导眼科疾病动物模型的潜能探索及治疗保护策略研究
- 批准号:81770887
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
噪声介导COX2激活抑制Nrf2/ARE信号通路在促进耳蜗毛细胞死亡中的作用机制及干预研究
- 批准号:81600807
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 46.13万 - 项目类别:
Elucidating anti-angiogenic tyrosine kinase inhibitor-induced vascular dysfunction
阐明抗血管生成酪氨酸激酶抑制剂诱导的血管功能障碍
- 批准号:
10570393 - 财政年份:2023
- 资助金额:
$ 46.13万 - 项目类别:
Addressing bone marrow lesions that compromise osteochondral tissue repair
解决损害骨软骨组织修复的骨髓病变
- 批准号:
10822755 - 财政年份:2023
- 资助金额:
$ 46.13万 - 项目类别:
3-D biofabricated feto-maternal interface tissue model to determine drug efficacy during pregnancy to reduce the risk of preterm birth
3D 生物制造胎儿-母体界面组织模型,用于确定妊娠期间的药物疗效,以降低早产风险
- 批准号:
10438407 - 财政年份:2022
- 资助金额:
$ 46.13万 - 项目类别: