Characterization of the cellular mechanisms of radiation induced brain necrosis for clinical intervention
放射性脑坏死细胞机制的表征用于临床干预
基本信息
- 批准号:10273297
- 负责人:
- 金额:$ 17.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-02 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdultAdverse effectsAnimal ModelAnimalsApoptosisAreaBiologicalBiological FactorsBiological MarkersBrainBrain InjuriesBrain NeoplasmsCancerousCell DeathCellsCerebrumCessation of lifeCharacteristicsChildhoodChildhood EpendymomaClinicalClinical DataCoculture TechniquesCognitiveCognitive deficitsCranial IrradiationDataDependenceDisease modelDistalDoseEducational workshopEffectivenessEngineeringExposure toGliomaHumanImageIn VitroIncidenceInflammatoryIntensity modulated proton therapyInterventionKnowledgeLaboratoriesLaboratory StudyLeadLifeLinear Energy TransferLinkMagnetic Resonance ImagingMalignant Childhood NeoplasmMissionModalityModelingMolecularNational Cancer InstituteNecrosisNecrosis InductionNormal tissue morphologyOrganoidsOutcomeParalysedPathway interactionsPatientsPharmacologyPhotonsPlanning TechniquesPreparationPreventionProcessProtonsPublic HealthRadiationRadiation InjuriesRadiation necrosisRadiation therapyRelative Biological EffectivenessResearchResearch SupportRodentRoentgen RaysRoleScanningSignal TransductionSurvivorsTechniquesTissuesTransgenic AnimalsTreatment Side EffectsUncertaintybrain cellbrain tissuecancer cellcancer rehabilitationcancer therapycell injurycell typeclinical investigationclinical practiceclinically relevantcombatdesigndisorder controlhigh riskimaging platformimprovedin vivoin vivo Modelinduced pluripotent stem cellinsightirradiationmedulloblastomanovelpediatric patientspre-clinicalpredictive modelingproton beamproton therapyradiation effectradiation responseradiation riskresponseside effecttreatment planningtreatment responsetumor
项目摘要
Project Summary/Abstract
Cure rates for childhood cancers have improved. Unfortunately, many survivors now live with life-long side
effects from treatment itself. Radiation therapy, used for brain tumors, is particularly damaging. The most
serious side effect is necrosis which can result in weakness, paralysis or even death. Proton therapy is an
increasingly popular radiation modality. Proton therapy reduces exposure to normal tissues and the reby
may decrease the incidence of cognitive deficits following radiation. However, recent studies, including our
own suggest that certain areas of proton beams may be more damaging to brain tissue than others
potentially leading to higher rates of necrosis. Here we will develop high accuracy models to correlate
necrosis with the physical parameters of proton beams. These models will include multi-cell type human
brain “organoids” as well as rodent animal models. Using these models as well as clinical data, we will
identify the physical factors of proton therapy which may lead to necrosis. This is significant in that this data
may be used to design safer proton therapy treatments in which the most biologically effective portions of
beams are solely placed within the tumor. This should reduce necrosis and improve disease control. In a
second component of our study, we will examine the molecular mechanisms of necrosis. Rather than being
simple dis-organized death, we will determine if radiation induces an orderly programmed cell death
pathway. We will conduct the following aims; (1) relate the physical factors of proton beams with biological
response, (2) explore the cellular and molecular mechanisms of radiation induced brain damage and (3)
validate the clinical consequences of variability in the effectiveness of proton beams. The knowledge gained
will quickly influence the treatment of brain tumor patients and expedite the clinical introduction of agents
and approaches to combat the negative effects of radiation on the brain.
项目摘要/摘要
童年癌症的治疗率有所提高。不幸的是,许多潮流现在生活在终身
治疗本身的影响。用于脑肿瘤的放射治疗尤其有害。最多
严重的副作用是坏死,可能导致无力,瘫痪甚至死亡。质子疗法是
日益流行的辐射方式。质子治疗减少了暴露于正常组织和Reby
可能会减少辐射后认知定义的事件。但是,最近的研究,包括我们的
自己表明,某些质子梁的某些区域可能比其他区域更损害脑组织
可能导致更高的坏死率。在这里,我们将开发高精度模型以关联
与质子束的物理参数的坏死。这些模型将包括多细胞类型的人
大脑“器官”和啮齿动物模型。使用这些模型以及临床数据,我们将
确定可能导致坏死的质子治疗的物理因素。这很重要,因为这些数据
可用于设计更安全的质子治疗疗法,其中生物学上最有效的部分
梁仅放置在肿瘤内。这应该减少坏死并改善疾病控制。在
我们研究的第二个组成部分,我们将检查坏死的分子机制。而不是
简单无组织的死亡,我们将确定辐射是否诱发有序编程的细胞死亡
路径。我们将实现以下目标; (1)将质子束的物理因子与生物学联系起来
反应,(2)探索辐射引起的脑损伤的细胞和分子机制,(3)
验证质子束有效性变异性的临床后果。知识获得了
将迅速影响脑肿瘤患者的治疗,并加快药剂的临床引入
和打击辐射对大脑的负面影响的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID R GROSSHANS其他文献
DAVID R GROSSHANS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID R GROSSHANS', 18)}}的其他基金
Determining the optimal ion and fractionation scheme for the treatment of GBM in a comprehensive human organoid model
在综合人体类器官模型中确定治疗 GBM 的最佳离子和分级方案
- 批准号:
10360627 - 财政年份:2021
- 资助金额:
$ 17.49万 - 项目类别:
Project 3: Enhanced Sensitivity of Tumors to Proton Beam Therapy: Mechanisms and Biomarkers.
项目 3:增强肿瘤对质子束治疗的敏感性:机制和生物标志物。
- 批准号:
10491858 - 财政年份:2021
- 资助金额:
$ 17.49万 - 项目类别:
Characterization of the cellular mechanisms of radiation induced brain necrosis for clinical intervention
放射性脑坏死细胞机制的表征用于临床干预
- 批准号:
10661007 - 财政年份:2021
- 资助金额:
$ 17.49万 - 项目类别:
Project 3: Enhanced Sensitivity of Tumors to Proton Beam Therapy: Mechanisms and Biomarkers.
项目 3:增强肿瘤对质子束治疗的敏感性:机制和生物标志物。
- 批准号:
10270307 - 财政年份:2021
- 资助金额:
$ 17.49万 - 项目类别:
Determining the optimal ion and fractionation scheme for the treatment of GBM in a comprehensive human organoid model
在综合人体类器官模型中确定治疗 GBM 的最佳离子和分级方案
- 批准号:
10570305 - 财政年份:2021
- 资助金额:
$ 17.49万 - 项目类别:
Characterization of the cellular mechanisms of radiation induced brain necrosis for clinical intervention
放射性脑坏死细胞机制的表征用于临床干预
- 批准号:
10460578 - 财政年份:2021
- 资助金额:
$ 17.49万 - 项目类别:
(PQ 9) Synaptic basis of deficits in attention and executive function following cranial radiation
(PQ 9) 颅脑辐射后注意力和执行功能缺陷的突触基础
- 批准号:
9763496 - 财政年份:2016
- 资助金额:
$ 17.49万 - 项目类别:
(PQ 9) Synaptic basis of deficits in attention and executive function following cranial radiation
(PQ 9) 颅脑辐射后注意力和执行功能缺陷的突触基础
- 批准号:
9172110 - 财政年份:2016
- 资助金额:
$ 17.49万 - 项目类别:
Mapping Proton RBE Variability Using Automated Biology and Monte Carlo Techniques
使用自动化生物学和蒙特卡罗技术绘制质子 RBE 变异性
- 批准号:
8754187 - 财政年份:2014
- 资助金额:
$ 17.49万 - 项目类别:
Mapping Proton RBE Variability Using Automated Biology and Monte Carlo Techniques
使用自动化生物学和蒙特卡罗技术绘制质子 RBE 变异性
- 批准号:
8887318 - 财政年份:2014
- 资助金额:
$ 17.49万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Teratogenicity assessment of new antiviral drugs using 3D morphogenesis models
使用 3D 形态发生模型评估新型抗病毒药物的致畸性
- 批准号:
10741474 - 财政年份:2023
- 资助金额:
$ 17.49万 - 项目类别:
Rapid Free-Breathing 3D High-Resolution MRI for Volumetric Liver Iron Quantification
用于体积肝铁定量的快速自由呼吸 3D 高分辨率 MRI
- 批准号:
10742197 - 财政年份:2023
- 资助金额:
$ 17.49万 - 项目类别:
Electronic Cigarettes: Emerging Ingredients, Acids, Toxicants, and Indicators of Non-Tobacco Nicotine
电子烟:新兴成分、酸、有毒物质和非烟草尼古丁指标
- 批准号:
10884691 - 财政年份:2023
- 资助金额:
$ 17.49万 - 项目类别:
Engineered BacNav and BacCav for Improved Excitability and Contraction
专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav
- 批准号:
10392121 - 财政年份:2022
- 资助金额:
$ 17.49万 - 项目类别:
Engineered BacNav and BacCav for Improved Excitability and Contraction
专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav
- 批准号:
10611385 - 财政年份:2022
- 资助金额:
$ 17.49万 - 项目类别: