Engineered BacNav and BacCav for Improved Excitability and Contraction
专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav
基本信息
- 批准号:10611385
- 负责人:
- 金额:$ 47.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAddressAdultAdverse effectsAnimal ModelAnti-Arrhythmia AgentsArrhythmiaBrugada syndromeCalciumCalcium ChannelCardiacCardiac Electrophysiologic TechniquesCardiac MyocytesCause of DeathCell Culture TechniquesCellsChromosome MappingCodon NucleotidesComputer SimulationCongenital AbnormalityDefectDeveloped CountriesDiseaseDisease modelEchocardiographyElectrocardiogramElectrophysiology (science)EngineeringFibrosisFoundationsFunctional disorderFutureGenesGeneticGenetic EngineeringGoalsHeartHeart DiseasesHeart failureHumanHuman EngineeringHuman bodyImpairmentIn SituIn VitroIonsKineticsLeftLoss of HeterozygosityMammalian CellMapsMeasurementMechanicsMediatingMembraneMethodsModelingMusMuscle ContractionMutateMutationMyocardial InfarctionMyocardial IschemiaMyocardiumNeonatalOpticsOrthologous GenePathologyPermeabilityPlayPotassium ChannelPredispositionPreparationPropertyRattusRegulationRoleShort QT syndromeSick Sinus SyndromeSite-Directed MutagenesisSliceSodiumSodium ChannelSpeedSyndromeSystemTestingTherapeuticTherapeutic EffectTissue ModelTissuesVariantVentricularViralViral VectorVirusWorkadeno-associated viral vectorbiophysical propertiescandidate identificationcardiac tissue engineeringextracellulargene therapyheart functionhemodynamicsimprovedin silicoin vitro Modelin vivoin vivo evaluationloss of function mutationmouse modelnoveloverexpressionpatch clamppharmacologicpreventrecombinant viral vectorsudden cardiac deathtraffickingtransgene expressionvoltage
项目摘要
Impaired cardiomyocyte excitability and contractile function represent important targets for preventing the
occurrence of sudden cardiac death and progression of heart failure. Growing mechanistic understanding of
cardiac pathologies and increasingly safe and effective methods to deliver viruses to human body make gene
therapies an attractive strategy for combatting various heart diseases. Specifically, the ability to genetically, in a
stable fashion, directly augment sodium or L-type calcium current in cardiomyocytes could directly enhance cell
excitability and contractility and counteract occurrence of electrical abnormalities in a variety of heart diseases.
However, cardiac Na+ or L-type Ca2+ channel genes are too large to be effectively delivered by therapeutic
viruses including adeno-associated viral (AAV) vectors. To address this challenge, we propose to develop a
novel AAV-based therapy that leverages engineering of much smaller prokaryotic voltage-gated sodium
(BacNav) and calcium (BacCav) channel genes. Our preliminary results show that genetically engineered BacNav
channels can improve cardiomyocyte excitability and action potential conduction in in vitro and in silico models
of rat and human fibrotic heart tissues. Furthermore, we demonstrate successful cardiomyocyte-specific AAV9
delivery of BacNav channels in healthy murine hearts without any adverse effects on cardiac electrophysiology
or contractile function. Building on these promising results, we propose to: 1) identify engineered BacNav variants
with specific mutations and trafficking motifs that maximize cardiomyocyte excitability and action potential speed
by utilizing in vitro cell culture, ex vivo heart slice preparations, and computer simulations and 2) engineer new
variants of BacCav, which alone or in combination with BacNav can augment not only cardiomyocyte excitability
but also contractile strength, which will be studied using engineered 3D heart tissue models in vitro. Finally, we
will exploit murine models of impaired cardiac tissue excitability (genetic loss of cardiac Na+ current (SCN5A+/-
)) or contractile dysfunction (myocardial infarction) to explore which of the identified BacNav and BacCav genes
delivered by AAV vector will induce optimal long-term therapeutic effects in vivo. If successful, these studies will
create a foundation for the future mechanistic studies of prokaryotic channel regulation in mammalian
cardiomyocytes and will guide testing of the engineered BacNav and BacCav channel therapies in large animal
models of heart disease.
心肌细胞兴奋性和收缩功能受损,代表了预防的重要目标
心脏猝死和心力衰竭进展的发生。对机械理解的日益理解
心脏病理和越来越安全有效的方法将病毒传递给人体的基因
治疗一种抗击各种心脏病的有吸引力的策略。具体而言,在遗传的能力中
稳定的时尚,直接增强钠或心肌细胞中的L型钙电流可以直接增强细胞
各种心脏病中电异常的兴奋性和收缩性和抵消性发生。
但是,心脏Na+或L型Ca2+通道基因太大,无法通过治疗有效传递
包括腺相关病毒(AAV)载体在内的病毒。为了应对这一挑战,我们建议开发
基于AAV的新型疗法,利用较小的原核生管钠的工程
(BACNAV)和钙(BACCAV)通道基因。我们的初步结果表明,基因设计的BACNAV
通道可以改善体外和计算机模型中的心肌细胞兴奋性和动作潜在传导
大鼠和人类纤维化心脏组织。此外,我们展示了成功的心肌细胞特异性AAV9
在健康的鼠心中传递BACNAV通道,对心脏生理学没有任何不利影响
或收缩功能。在这些有希望的结果的基础上,我们建议:1)确定工程的BACNAV变体
具有特定的突变和运输基序,可最大化心肌细胞兴奋性和动作势速度
通过利用体外细胞培养,离体心脏切片制剂和计算机模拟以及2)工程师新
单独或与BACNAV结合的BACCAV的变体不仅可以增强心肌细胞兴奋性
而且还可以在体外使用工程的3D心脏组织模型对收缩力进行研究。最后,我们
将利用心脏组织兴奋性受损的鼠模型(心脏NA+电流的遗传丧失(SCN5A +/-)
)或收缩功能障碍(心肌梗塞),以探索已鉴定的BACNAV和BACCAV基因
由AAV载体提供的将在体内引起最佳的长期治疗作用。如果成功,这些研究将
为哺乳动物的原核生物通道调节的未来机械研究创造基础
心肌细胞并将指导大型动物中工程的BACNAV和BACCAV通道疗法的测试
心脏病的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nenad Bursac其他文献
Nenad Bursac的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nenad Bursac', 18)}}的其他基金
Engineering a Human Skeletal Muscle Tissue Model of LGMD2B
设计 LGMD2B 的人体骨骼肌组织模型
- 批准号:
10719721 - 财政年份:2023
- 资助金额:
$ 47.75万 - 项目类别:
Engineering Human Heart Tissues with Polyploid Cardiomyocytes
用多倍体心肌细胞改造人类心脏组织
- 批准号:
10467794 - 财政年份:2022
- 资助金额:
$ 47.75万 - 项目类别:
Engineering Human Heart Tissues with Polyploid Cardiomyocytes
用多倍体心肌细胞改造人类心脏组织
- 批准号:
10616611 - 财政年份:2022
- 资助金额:
$ 47.75万 - 项目类别:
Engineered BacNav and BacCav for Improved Excitability and Contraction
专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav
- 批准号:
10392121 - 财政年份:2022
- 资助金额:
$ 47.75万 - 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
- 批准号:
10001507 - 财政年份:2019
- 资助金额:
$ 47.75万 - 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
- 批准号:
9810917 - 财政年份:2019
- 资助金额:
$ 47.75万 - 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
- 批准号:
10242833 - 财政年份:2019
- 资助金额:
$ 47.75万 - 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
- 批准号:
10477016 - 财政年份:2019
- 资助金额:
$ 47.75万 - 项目类别:
Engineering of Human Excitable Tissues from Unexcitable Cells
从不可兴奋细胞改造人类可兴奋组织
- 批准号:
9270588 - 财政年份:2016
- 资助金额:
$ 47.75万 - 项目类别:
Engineering of Human Excitable Tissues from Unexcitable Cells
从不可兴奋细胞改造人类可兴奋组织
- 批准号:
9046968 - 财政年份:2016
- 资助金额:
$ 47.75万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 47.75万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 47.75万 - 项目类别:
Advancing visible light optical coherence tomography in glaucoma detection
推进可见光光学相干断层扫描在青光眼检测中的应用
- 批准号:
10567788 - 财政年份:2023
- 资助金额:
$ 47.75万 - 项目类别:
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 47.75万 - 项目类别: