Engineering Human Heart Tissues with Polyploid Cardiomyocytes

用多倍体心肌细胞改造人类心脏组织

基本信息

  • 批准号:
    10616611
  • 负责人:
  • 金额:
    $ 54.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Human induced pluripotent stem cells (hiPSCs) represent a potentially unlimited source of functional cardiomyocytes (hiPSC-CMs) for use in disease modeling, drug development, and regenerative therapies. In particular, use of hiPSC-CM-derived microtissues in microphysiological (“organ-on-chip”) systems holds promise as the future mainstay of pharmaceutical research and a platform to improve our understanding of genotype-phenotype relationships in mono- and polygenic diseases of the human heart. However, a major obstacle to wide-spread use of hiPSC-CMs in these applications are their immature properties including small cell size, lack of T-tubules, predominantly glycolytic metabolism, and reduced functional output, to name a few. One important aspect of postnatal CM maturation - increased ploidy - has been largely understudied. Namely, in vitro cultured hiPSC-CMs are predominantly mononuclear and diploid, while the adult human myocardium consists of ~90% polyploid CMs. We thus propose to investigate potential roles of polyploidy in hiPSC-CM maturation, and specifically, to explore if engineered polyploidy of hiPSC-CMs can endow human engineered cardiac tissues (hECTs) with increased functionality and maturity compared to control tissues made from primarily diploid CMs. Our preliminary results show that stable hiPSC-CM polyploidy induced genetically or pharmacologically results in increased size and mitochondrial density of hiPSC-CMs, as well as contractile strength and conduction velocity of hECTs. In the proposed studies, we will further examine roles of CM polyploidization in structural, functional, and metabolic maturation of hECTs and investigate polyploidy-induced transcriptomic and epigenetic changes in hiPSC-CMs. Furthermore, using a novel bioreactor with capacity to dynamically control applied mechanical preload and afterload to hECTs, we will investigate the relationships between developmentally-mimetic regimes of mechanical loading and CM polyploidy. We will also determine if polyploidy sensitizes hiPSC-CMs to hypertrophic stimuli in vitro and protects hECTs from oxidative stress in vitro and ischemic damage in vivo. Finally, we will apply CRISPR/Cas9 screening methodologies to identify genetic inducers of terminal maturation in already polyploidy hiPSC-CMs and will perform additional screens in both diploid and polyploid hiPSC-CMs to identify candidate mitogens that can promote CM cell cycle activity. By successfully completing these studies, we expect to improve our understanding of physiological roles of polyploidy in cardiac development and to establish the foundation for the future translational uses of engineered cardiac tissues in disease modeling, drug development, and cardiac therapies.
人类诱导多能干细胞 (hiPSC) 代表了潜在的无限功能来源 心肌细胞 (hiPSC-CM) 用于疾病建模、药物开发和再生疗法。 特别是,在微生理学(“芯片上器官”)系统中使用 hiPSC-CM 衍生的微组织是有效的 有望成为药物研究的未来支柱和提高我们对药物的理解的平台 然而,人类心脏单基因和多基因疾病中的基因型-表型关系。 hiPSC-CM 在这些应用中广泛使用的障碍是其不成熟的特性,包括小 细胞大小、T 管缺乏、主要是糖酵解代谢以及功能输出减少等等。 出生后 CM 成熟的一个重要方面——倍性增加——尚未得到充分研究。 体外培养的 hiPSC-CM 主要是单核和二倍体,而成人心肌 由约 90% 的多倍体 CM 组成,因此我们建议研究多倍体在 hiPSC-CM 中的潜在作用。 成熟,特别是探索 hiPSC-CM 的工程化多倍体是否可以赋予人类工程化 与由以下材料制成的对照组织相比,心脏组织(hECT)具有更高的功能和成熟度 我们的初步结果表明,稳定的 hiPSC-CM 多倍体是通过遗传或诱导产生的。 药理学结果增加 hiPSC-CM 的大小和线粒体密度,以及收缩性 hECT 的强度和传导速度 在拟议的研究中,我们将进一步研究 CM 的作用。 hECT 的结构、功能和代谢成熟中的多倍化,并研究多倍体诱导的 hiPSC-CM 中的转录组和表观遗传变化此外,使用具有能力的新型生物反应器。 动态控制对 hECT 施加的机械预载和后载,我们将研究这些关系 我们还将确定机械负荷的发育模拟机制和 CM 多倍体之间的关系。 如果多倍体使 hiPSC-CM 在体外对肥大刺激敏感并保护 hECT 免受氧化应激 最后,我们将应用 CRISPR/Cas9 筛选方法来识别。 已是多倍体 hiPSC-CM 中最终成熟的遗传诱导剂,并将进行额外的筛选 在二倍体和多倍体 hiPSC-CM 中鉴定可促进 CM 细胞周期活性的候选有丝分裂原。 通过成功完成这些研究,我们期望提高我们对生理作用的理解 心脏发育中的多倍体,并为未来工程化应用奠定基础 疾病建模、药物开发和心脏治疗中的心脏组织。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nenad Bursac其他文献

Nenad Bursac的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nenad Bursac', 18)}}的其他基金

Engineering a Human Skeletal Muscle Tissue Model of LGMD2B
设计 LGMD2B 的人体骨骼肌组织模型
  • 批准号:
    10719721
  • 财政年份:
    2023
  • 资助金额:
    $ 54.46万
  • 项目类别:
Engineering Human Heart Tissues with Polyploid Cardiomyocytes
用多倍体心肌细胞改造人类心脏组织
  • 批准号:
    10467794
  • 财政年份:
    2022
  • 资助金额:
    $ 54.46万
  • 项目类别:
Engineered BacNav and BacCav for Improved Excitability and Contraction
专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav
  • 批准号:
    10392121
  • 财政年份:
    2022
  • 资助金额:
    $ 54.46万
  • 项目类别:
Engineered BacNav and BacCav for Improved Excitability and Contraction
专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav
  • 批准号:
    10611385
  • 财政年份:
    2022
  • 资助金额:
    $ 54.46万
  • 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
  • 批准号:
    10001507
  • 财政年份:
    2019
  • 资助金额:
    $ 54.46万
  • 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
  • 批准号:
    9810917
  • 财政年份:
    2019
  • 资助金额:
    $ 54.46万
  • 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
  • 批准号:
    10242833
  • 财政年份:
    2019
  • 资助金额:
    $ 54.46万
  • 项目类别:
Microphysiological Human Tissue Systems for Monitoring of Genome Editing Outcomes
用于监测基因组编辑结果的微生理人体组织系统
  • 批准号:
    10477016
  • 财政年份:
    2019
  • 资助金额:
    $ 54.46万
  • 项目类别:
Engineering of Human Excitable Tissues from Unexcitable Cells
从不可兴奋细胞改造人类可兴奋组织
  • 批准号:
    9270588
  • 财政年份:
    2016
  • 资助金额:
    $ 54.46万
  • 项目类别:
Engineering of Human Excitable Tissues from Unexcitable Cells
从不可兴奋细胞改造人类可兴奋组织
  • 批准号:
    9046968
  • 财政年份:
    2016
  • 资助金额:
    $ 54.46万
  • 项目类别:

相似国自然基金

基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
  • 批准号:
    82001520
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
人类胎盘合体滋养层形成分子机制及其与子痫前期发生关联的研究
  • 批准号:
    31900602
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
  • 批准号:
    31900570
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
  • 批准号:
    10564801
  • 财政年份:
    2023
  • 资助金额:
    $ 54.46万
  • 项目类别:
Defining molecular mechanisms by which stimulant evoked dopamine drives inflammation and neuronal dysfunction in neuroHIV
定义兴奋剂诱发多巴胺驱动神经艾滋病毒炎症和神经元功能障碍的分子机制
  • 批准号:
    10685160
  • 财政年份:
    2023
  • 资助金额:
    $ 54.46万
  • 项目类别:
Using cellular co-biosis and age programmable mice to derive a global interaction map of aging hallmarks
使用细胞共生和年龄可编程小鼠来得出衰老标志的全局相互作用图
  • 批准号:
    10721454
  • 财政年份:
    2023
  • 资助金额:
    $ 54.46万
  • 项目类别:
Epigenetic Regulation of Skin Regeneration
皮肤再生的表观遗传调控
  • 批准号:
    10707389
  • 财政年份:
    2022
  • 资助金额:
    $ 54.46万
  • 项目类别:
Gastroesophageal junction stem cells as the origin of Barretts esophagus and cancer
胃食管连接处干细胞是巴雷特食管和癌症的起源
  • 批准号:
    10506097
  • 财政年份:
    2022
  • 资助金额:
    $ 54.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了