Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
基本信息
- 批准号:10586599
- 负责人:
- 金额:$ 58.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbnormal CellAffectAmino AcidsAnimal ModelAortaArterial InjuryArteriesAtherosclerosisAtomic Force MicroscopyAttenuatedBiochemicalBiocompatible MaterialsBiologicalBiological ModelsBiologyBiomechanicsBiomimeticsBiophysical ProcessBlood VesselsCardiovascular DiseasesCardiovascular systemCell SeparationCell physiologyCellsCellular biologyChromatinCoronary ArteriosclerosisCoronary heart diseaseCoupledDNA Sequence AlterationDataDevelopmentDiseaseDisease ProgressionEnvironmentEventExtracellular MatrixExtracellular Matrix ProteinsFamily suidaeFeedbackFluorescent in Situ HybridizationGene ExpressionGenetic TranscriptionGoalsHistologicHistologyHumanHyperplasiaImageIn VitroInjuryInvadedMachine LearningMechanicsMediatingMedicineMicroscopyModelingMolecularMonitorMorphologyMusNuclear StructureOpticsPathologicPathologic ProcessesPathologyPharmacotherapyPhenotypePhysical condensationPhysiologicalProductionProliferatingPropertyProtein FamilyProteinsRNAResearchResearch PersonnelResearch ProposalsResolutionRoleSmooth Muscle MyocytesStructureSystemTestingTherapeuticTimeTissue EngineeringTissuesVascular Smooth MuscleWorkarterial remodelingarterial stiffnesscardiovascular risk factorcell behaviorcell motilityepigenomicsfemoral arteryin vivoin vivo Modelinhibitor-of-apoptosis proteininjuredknock-downmachine learning algorithmmembermigrationmouse modelnanofibernanoscaleneointima formationnew therapeutic targetnoveloverexpressionpolyacrylamide hydrogelsprotein expressionreconstructionresponsescaffoldsingle cell analysissoft tissuesurvivinthree dimensional cell culturetranscriptome sequencingtranscriptomicsvascular abnormalityvascular injuryvascular smooth muscle cell migrationvascular smooth muscle cell proliferation
项目摘要
SUMMARY
Arterial stiffness is a key risk factor for cardiovascular disease (CVD) events. A change in arterial
stiffness is a significant pathology in vascular injury, atherosclerosis, and coronary disease. Stiffening
of the vessel wall promotes anomalous migration and proliferation of vascular smooth muscle cells
(VSMCs), leading to neointima formation on the vessel wall. It is not clear, however, how the
extracellular matrix (ECM) influences these pathological processes. This research proposal will address
this by exploring how changes in arterial stiffness elicit VSMC behaviors that contribute to cardiovascular
disease. Specifically, this work draws upon preliminary data revealing that the protein survivin is a key
regulator of stiffness-mediated VSMC proliferation and migration and an effector of arterial stiffening
and remodeling. Using mouse and human VSMCs, we will first explore how vascular ECM stiffness
impacts VSMC migration, proliferation, and chromatin organization at the single-cell level (early stage
of disease progression; Aim 1) and, second, determine how pathological ECM stiffness drives neointima
formation, altering the local mechanical environment of VSMCs in vitro (advanced stage of disease
progression; Aim 2). Lastly, we will confirm survivin’s role in regulating both ECM production and arterial
stiffness (in vivo animal model; Aim 2). These aims will be achieved using 3D cell culture with a novel
in vitro porcine decellularized aorta ECM-based fibrous scaffold system and mouse injury models. Briefly,
VSMCs isolated from mouse and human aortas will be cultured on nanofibrous scaffolds of different
stiffnesses and structures that mimic normal and pathological conditions in the body. The VSMC
responses to pathological ECM stiffness will be analyzed using advanced microscopy to observe
changes in cellular/nuclear structure and biomechanical properties in vitro, and the RNA and protein
expression will be assessed at the single-cell level. Finally, arterial stiffness and VSMC function will be
studied in intact arteries of injured mice; histology and biochemical analyses of dissected tissues will be
conducted after arterial stiffness has been manipulated by arterial injury, drug treatment, or genetic
mutations. This project will, for the first time, study the molecular and biophysical mechanisms by which
survivin (i) mediates stiffness-sensitive VSMC functions and (ii) contributes to neointima formation and
stiffening, revealing a completely new aspect of survivin biology in VSMCs and in the pathology of
arterial stiffness. Overall, this proposal is unique in its ability to identify potential new therapeutic targets
for the treatment of CVDs.
概括
动脉僵硬度是心血管疾病 (CVD) 事件的一个关键危险因素。
僵硬是血管损伤、动脉粥样硬化和冠状动脉疾病的重要病理学。
血管壁的改变促进血管平滑肌细胞的异常迁移和增殖
(VSMC),导致血管壁上新内膜形成,然而,尚不清楚是如何发生的。
细胞外基质(ECM)影响这些病理过程。
通过探索动脉僵硬度的变化如何引发有助于心血管的 VSMC 行为
具体来说,这项工作利用的初步数据表明,生存蛋白是关键。
僵硬度介导的 VSMC 增殖和迁移的调节因子以及动脉硬化的效应因子
使用小鼠和人类 VSMC,我们将首先探讨血管 ECM 硬度如何变化。
在单细胞水平(早期阶段)影响 VSMC 迁移、增殖和染色质组织
疾病进展;目标 1),其次,确定病理性 ECM 僵硬如何驱动新内膜
形成,改变体外 VSMC 的局部机械环境(疾病晚期
目标 2) 最后,我们将确认存活蛋白在调节 ECM 产生和动脉中的作用。
硬度(体内动物模型;目标 2)将通过使用 3D 细胞培养和新颖的方法来实现。
体外猪脱细胞主动脉 ECM 纤维支架系统和小鼠损伤模型。
从小鼠和人类主动脉分离的 VSMC 将在不同的纳米纤维支架上培养
模拟体内正常和病理状况的硬度和结构。
将使用先进的显微镜来分析对病理性 ECM 僵硬的反应,以观察
体外细胞/核结构和生物力学特性的变化,以及 RNA 和蛋白质
最后,将在单细胞水平评估动脉僵硬度和 VSMC 功能。
将在受伤小鼠的完整动脉中研究解剖组织的组织学和生化分析;
在通过动脉损伤、药物治疗或遗传控制动脉僵硬度后进行
该项目将首次研究突变的分子和生物物理机制。
生存素 (i) 介导硬度敏感的 VSMC 功能,(ii) 有助于新内膜形成和
变硬,揭示了 VSMC 中存活蛋白生物学和病理学的全新方面
总体而言,该提案的独特之处在于它能够确定潜在的新治疗靶点。
用于治疗CVD。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongho Bae其他文献
Yongho Bae的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongho Bae', 18)}}的其他基金
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10683796 - 财政年份:2022
- 资助金额:
$ 58.84万 - 项目类别:
相似国自然基金
组织细胞外基质异常对机体肿瘤免疫监视效应的影响及作用机制
- 批准号:32370839
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
左归饮对肿瘤相关巨噬细胞极化介导食管癌糖代谢异常的影响
- 批准号:
- 批准年份:2022
- 资助金额:49 万元
- 项目类别:面上项目
DAMPs相关铁代谢异常对骨肉瘤CD24+细胞亚群干性维持和免疫逃逸的影响及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
COH高雌激素环境通过抑制p65核转位影响子宫trNK细胞增殖和分化致胎盘形态和功能异常的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
室管膜细胞Connexin43缺陷导致脑脊液Ca2+稳态异常影响觉醒调节的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Deciphering the 3D genome of pediatric brain tumors
破译儿童脑肿瘤的 3D 基因组
- 批准号:
10585741 - 财政年份:2022
- 资助金额:
$ 58.84万 - 项目类别:
Benefits of nicotinamide in placental development and in preeclamsia
烟酰胺对胎盘发育和先兆子痫的益处
- 批准号:
10469439 - 财政年份:2021
- 资助金额:
$ 58.84万 - 项目类别:
Benefits of nicotinamide in placental development and in preeclamsia
烟酰胺对胎盘发育和先兆子痫的益处
- 批准号:
10619597 - 财政年份:2021
- 资助金额:
$ 58.84万 - 项目类别:
Bridging the Gap from Hemodynamic Stress to Intracranial Aneurysm Instability: An Integrated Multimodal Approach
弥合血流动力学应激与颅内动脉瘤不稳定之间的差距:综合多模式方法
- 批准号:
10610461 - 财政年份:2021
- 资助金额:
$ 58.84万 - 项目类别: